Decoding of Attentional State Using High-Frequency Local Field Potential Is As Accurate As Using Spikes

Cereb Cortex. 2021 Jul 29;31(9):4314-4328. doi: 10.1093/cercor/bhab088.


Local field potentials (LFPs) in visual cortex are reliably modulated when the subject's focus of attention is cued into versus out of the receptive field of the recorded sites, similar to modulation of spikes. However, human psychophysics studies have used an additional attention condition, neutral cueing, for decades. The effect of neutral cueing on spikes was examined recently and found to be intermediate between cued and uncued conditions. However, whether LFPs are also precise enough to represent graded states of attention is unknown. We found in rhesus monkeys that LFPs during neutral cueing were also intermediate between cued and uncued conditions. For a single electrode, attention was more discriminable using high frequency (>30 Hz) LFP power than spikes, which is expected because LFP represents a population signal and therefore is expected to be less noisy than spikes. However, previous studies have shown that when multiple electrodes are used, spikes can outperform LFPs. Surprisingly, in our study, spikes did not outperform LFPs when discriminability was computed using multiple electrodes, even though the LFP activity was highly correlated across electrodes compared with spikes. These results constrain the spatial scale over which attention operates and highlight the usefulness of LFPs in studying attention.

Keywords: gamma; high-gamma; linear discriminant analysis; population coding; spatial attention.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials / physiology*
  • Animals
  • Attention / physiology*
  • Macaca mulatta
  • Male
  • Photic Stimulation / methods*
  • Visual Cortex / physiology*