Effect of environmental pollution PM2.5, carbon monoxide, and ozone on the incidence and mortality due to SARS-CoV-2 infection in London, United Kingdom

J King Saud Univ Sci. 2021 May;33(3):101373. doi: 10.1016/j.jksus.2021.101373. Epub 2021 Feb 16.

Abstract

Objectives: COVID-19 pandemic raised several queries on the relationship between the environment pollution and occurrence of new cases and deaths. This study aims to explore the effect of environmental pollution, particulate matter (PM 2.5 μm), carbon monoxide (CO) and Ozone (O3) on daily cases and daily deaths due to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection in a largest metropolitan city London, United Kingdom.

Methods: For this study, we selected London, one of the highly populated capitals, and markedly affected due to COVID-19 pandemic. The data on the SARS-CoV-2 daily new cases and deaths were recorded from UK-gov Web "Coronavirus COVId-19 in the UK, 2020". The daily environmental pollutants PM 2.5 μm, CO and O3 were recorded from the metrological web "(London Air Pollution, Air Quality Index- AQI, 2020)". The daily cases, deaths, PM 2.5 μm, CO and O3 were documented from the date of the occurrence of the first case of SARS-CoV-2 in London, February 24 to November 2, 2020.

Results: The SARS-CoV-2 cases and deaths were positively related with environmental pollutants, PM2.5, O3 and CO levels. Additionally, with 1 µm increase in PM2.5 the number of cases and deaths significantly increased by 1.1% and 2.3% respectively. A 1 unit increase in CO level significantly increased the number of cases and deaths by 21.3% and 21.8% respectively. A similar trend was observed in O3, with 1-unit increase, the number of cases and deaths were significantly increased respectively by 0.8% and 4.4%.

Conclusions: Environmental pollutants, PM2.5, CO and O3 have a positive association with an increased number of SARS-CoV-2 daily cases and daily deaths in London, UK. Environmental pollution management authorities must implement necessary policies and assist in planning to minimize the environmental pollution and COVID-19 pandemic.

Keywords: COVID 19; Environmental pollution; London; Mortality; Prevalence.