Tracking and Mining the COVID-19 Research Literature
- PMID: 33870056
- PMCID: PMC8025982
- DOI: 10.3389/frma.2020.594060
Tracking and Mining the COVID-19 Research Literature
Abstract
The unprecedented, explosive growth of the COVID-19 domain presents challenges to researchers to keep up with research knowledge within the domain. This article profiles this research to help make that knowledge more accessible via overviews and novel categorizations. We provide websites offering means for researchers to probe more deeply to address specific questions. We further probe and reassemble COVID-19 topical content to address research issues concerning topical evolution and emphases on tactical vs. strategic approaches to mitigate this pandemic and reduce future viral threats. Data suggest that heightened attention to strategic, immunological factors is warranted. Connecting with and transferring in research knowledge from outside the COVID-19 domain demand a viable COVID-19 knowledge model. This study provides complementary topical categorizations to facilitate such modeling to inform future Literature-Based Discovery endeavors.
Keywords: COVID-19; bibliometrics; coronavirus; pandemic; tech mining; text analysis.
Copyright © 2020 Porter, Zhang, Huang and Wu.
Figures
Similar articles
-
The long COVID research literature.Front Res Metr Anal. 2023 Mar 24;8:1149091. doi: 10.3389/frma.2023.1149091. eCollection 2023. Front Res Metr Anal. 2023. PMID: 37034420 Free PMC article.
-
Text mining approaches for dealing with the rapidly expanding literature on COVID-19.Brief Bioinform. 2021 Mar 22;22(2):781-799. doi: 10.1093/bib/bbaa296. Brief Bioinform. 2021. PMID: 33279995 Free PMC article. Review.
-
A Bibliometric Network Analysis of Coronavirus during the First Eight Months of COVID-19 in 2020.Int J Environ Res Public Health. 2021 Jan 22;18(3):952. doi: 10.3390/ijerph18030952. Int J Environ Res Public Health. 2021. PMID: 33499127 Free PMC article.
-
Studies of Novel Coronavirus Disease 19 (COVID-19) Pandemic: A Global Analysis of Literature.Int J Environ Res Public Health. 2020 Jun 8;17(11):4095. doi: 10.3390/ijerph17114095. Int J Environ Res Public Health. 2020. PMID: 32521776 Free PMC article. Review.
-
Modeling and tracking Covid-19 cases using Big Data analytics on HPCC system platformm.J Big Data. 2021;8(1):33. doi: 10.1186/s40537-021-00423-z. Epub 2021 Feb 15. J Big Data. 2021. PMID: 33614394 Free PMC article.
Cited by
-
Responsible models and indicators: challenges from artificial intelligence.Front Res Metr Anal. 2023 Oct 18;8:1305692. doi: 10.3389/frma.2023.1305692. eCollection 2023. Front Res Metr Anal. 2023. PMID: 37920785 Free PMC article. No abstract available.
-
COVID-19 knowledge deconstruction and retrieval: an intelligent bibliometric solution.Scientometrics. 2023 May 31:1-31. doi: 10.1007/s11192-023-04747-w. Online ahead of print. Scientometrics. 2023. PMID: 37360228 Free PMC article.
-
The long COVID research literature.Front Res Metr Anal. 2023 Mar 24;8:1149091. doi: 10.3389/frma.2023.1149091. eCollection 2023. Front Res Metr Anal. 2023. PMID: 37034420 Free PMC article.
-
The role of blogs and news sites in science communication during the COVID-19 pandemic.Front Res Metr Anal. 2022 Sep 23;7:824538. doi: 10.3389/frma.2022.824538. eCollection 2022. Front Res Metr Anal. 2022. PMID: 36213935 Free PMC article. Review.
-
Expediting knowledge acquisition by a web framework for Knowledge Graph Exploration and Visualization (KGEV): case studies on COVID-19 and Human Phenotype Ontology.BMC Med Inform Decis Mak. 2022 Jun 2;22(Suppl 2):147. doi: 10.1186/s12911-022-01848-z. BMC Med Inform Decis Mak. 2022. PMID: 35655307 Free PMC article.
References
-
- Alexander J., Chase J., Newman N., Porter A., Roessner J. D. (2012). Emergence as a conceptual framework for understanding scientific and technological progress, in PICMET (Portland International Conference on Management of Engineering and Technology) (Vancouver, BC: ).
-
- Bruza P., Weeber M. (Eds.). (2008). Literature-Based Discovery. Berlin Heidelberg: Springer Science and Business Media. 10.1007/978-3-540-68690-3 - DOI
-
- Carley S. F., Newman N. C., Porter A. L., Garner J. (2018). An indicator of technical emergence. Scientometrics 115, 35–49. 10.1007/s11192-018-2654-5 - DOI
LinkOut - more resources
Full Text Sources
