Geometric deep learning enables 3D kinematic profiling across species and environments
- PMID: 33875887
- PMCID: PMC8530226
- DOI: 10.1038/s41592-021-01106-6
Geometric deep learning enables 3D kinematic profiling across species and environments
Abstract
Comprehensive descriptions of animal behavior require precise three-dimensional (3D) measurements of whole-body movements. Although two-dimensional approaches can track visible landmarks in restrictive environments, performance drops in freely moving animals, due to occlusions and appearance changes. Therefore, we designed DANNCE to robustly track anatomical landmarks in 3D across species and behaviors. DANNCE uses projective geometry to construct inputs to a convolutional neural network that leverages learned 3D geometric reasoning. We trained and benchmarked DANNCE using a dataset of nearly seven million frames that relates color videos and rodent 3D poses. In rats and mice, DANNCE robustly tracked dozens of landmarks on the head, trunk, and limbs of freely moving animals in naturalistic settings. We extended DANNCE to datasets from rat pups, marmosets, and chickadees, and demonstrate quantitative profiling of behavioral lineage during development.
Figures
Comment in
-
The DANNCE of the rats: a new toolkit for 3D tracking of animal behavior.Nat Methods. 2021 May;18(5):460-462. doi: 10.1038/s41592-021-01110-w. Nat Methods. 2021. PMID: 33875886 No abstract available.
Similar articles
-
Continuous Whole-Body 3D Kinematic Recordings across the Rodent Behavioral Repertoire.Neuron. 2021 Feb 3;109(3):420-437.e8. doi: 10.1016/j.neuron.2020.11.016. Epub 2020 Dec 18. Neuron. 2021. PMID: 33340448 Free PMC article.
-
Markerless 2D kinematic analysis of underwater running: A deep learning approach.J Biomech. 2019 Apr 18;87:75-82. doi: 10.1016/j.jbiomech.2019.02.021. Epub 2019 Mar 1. J Biomech. 2019. PMID: 30850178
-
Deep Learning for Fall Detection: Three-Dimensional CNN Combined With LSTM on Video Kinematic Data.IEEE J Biomed Health Inform. 2019 Jan;23(1):314-323. doi: 10.1109/JBHI.2018.2808281. Epub 2018 Feb 20. IEEE J Biomed Health Inform. 2019. PMID: 29994460
-
Automated Video Behavior Recognition of Pigs Using Two-Stream Convolutional Networks.Sensors (Basel). 2020 Feb 17;20(4):1085. doi: 10.3390/s20041085. Sensors (Basel). 2020. PMID: 32079299 Free PMC article.
-
Automatic Segmentation of Multiple Organs on 3D CT Images by Using Deep Learning Approaches.Adv Exp Med Biol. 2020;1213:135-147. doi: 10.1007/978-3-030-33128-3_9. Adv Exp Med Biol. 2020. PMID: 32030668 Review.
Cited by
-
A-SOiD, an active-learning platform for expert-guided, data-efficient discovery of behavior.Nat Methods. 2024 Apr;21(4):703-711. doi: 10.1038/s41592-024-02200-1. Epub 2024 Feb 21. Nat Methods. 2024. PMID: 38383746
-
A novel behavioral paradigm using mice to study predictive postural control.bioRxiv [Preprint]. 2024 Jul 16:2024.07.01.601478. doi: 10.1101/2024.07.01.601478. bioRxiv. 2024. PMID: 39005260 Free PMC article. Preprint.
-
Lightning Pose: improved animal pose estimation via semi-supervised learning, Bayesian ensembling and cloud-native open-source tools.Nat Methods. 2024 Jul;21(7):1316-1328. doi: 10.1038/s41592-024-02319-1. Epub 2024 Jun 25. Nat Methods. 2024. PMID: 38918605
-
Tracking together: estimating social poses.Nat Methods. 2022 Apr;19(4):410-411. doi: 10.1038/s41592-022-01452-z. Nat Methods. 2022. PMID: 35414127 No abstract available.
-
Toward a Computational Neuroethology of Vocal Communication: From Bioacoustics to Neurophysiology, Emerging Tools and Future Directions.Front Behav Neurosci. 2021 Dec 20;15:811737. doi: 10.3389/fnbeh.2021.811737. eCollection 2021. Front Behav Neurosci. 2021. PMID: 34987365 Free PMC article. Review.
References
-
- Alhwarin F, Ferrein A & Scholl I IR Stereo Kinect: Improving Depth Images by Combining Structured Light with IR Stereo. In PRICAI 2014: Trends in Artificial Intelligence 409–421 (2014).
-
- Mathis A et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci 21, 1281–1289 (2018). - PubMed
Methods References
-
- Insafutdinov E, Pishchulin L, Andres B, Andriluka M & Schiele B Deepercut: A deeper, stronger, and faster multi-person pose estimation model. in European Conference on Computer Vision (ECCV) (2016).
-
- Hartley R & Zisserman A Multiple View Geometry in Computer Vision. (Cambridge University Press, 2003).
-
- Ronneberger O, Fischer P & Brox T U-Net: Convolutional Networks for Biomedical Image Segmentation. Miccai 234–241 (2015).
-
- Newell A, Yang K & Deng J Stacked Hourglass Networks for Human Pose Estimation. in European Conference on Computer Vision (ECCV) (2016).
-
- Glorot X & Bengio Y Understanding the difficulty of training deep feedforward neural networks. J. Mach. Learn. Res. - Proc. Track 9, 249–256 (2010).
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
