Supramolecular assembly of Toll-like receptor 7/8 agonist into multimeric water-soluble constructs enables superior immune stimulation in vitro and in vivo

ACS Appl Bio Mater. 2020 May 18;3(5):3187-3195. doi: 10.1021/acsabm.0c00189. Epub 2020 Apr 8.


Resiquimod or R848 (RSQD) is a Toll-like receptor (TLR) 7/8 agonist which shows promise as vaccine adjuvant due to its potential to promote highly desirable cellular immunity. The development of this small molecule in the field to date has been largely impeded by its rapid in vivo clearance and lack of association with vaccine antigens. Here, we report a multimeric TLR 7/8 construct of nano-scale size, which results from a spontaneous self-assembly of RSQD with a water-soluble clinical-stage polymer - poly[di(carboxylatophenoxy)phosphazene] (PCPP). The formation of ionically paired construct (PCPP-R) and a ternary complex, which also includes Hepatitis C virus (HCV) antigen, has been demonstrated by dynamic lights scattering (DLS), turbidimetry, fluorescence spectroscopy, asymmetric flow field flow fractionation (AF4), and 1H NMR spectroscopy methods. The resulting supramolecular assembly PCPP-R enabled superior immunostimulation in cellular assays (mouse macrophage reporter cell line) and displayed improved in vitro hemocompatibility (human erythrocytes). In vivo studies demonstrated that PCPP-R adjuvanted HCV formulation induced higher serum neutralization titers in BALB/c mice and shifted the response towards desirable cellular immunity, as evaluated by antibody isotype ratio (IgG2a/IgG1) and ex vivo analysis of cytokine secreting splenocytes (higher levels of interferon gamma (IFN-γ) single and tumor necrosis factor alpha (TNF-α)/IFN-γ double producing cells). The non-covalent multimerization approach stands in contrast to previously suggested RSQD delivery methods, which involve covalent conjugation or encapsulation, and offers a flexible methodology that can be potentially integrated with other parenterally administered drugs.

Keywords: Hepatitis C virus; Immunoadjuvants; Multimeric; Supramolecular chemistry; TLR agonists; Vaccine delivery.