Asthma is characterized by airway remodeling. Glucocorticoid induced transcript 1 (GLCCI1) was reported to be associated with the development of asthma, while its exact mechanism is still not clear. In our study, ovalbumin (OVA) combined with aluminum hydroxide were used to establish asthmatic mouse model. ELISA assay was fulfilled to ensure the concentration of inflammatory factors in both bronchoalveolar lavage fluid and serum. The pathological changes and collagen deposition in lung tissues were analyzed using H&E staining and Masson staining, respectively. The expression of proteins was measured using western blot, and the expression of GLCCI1 mRNA was ensured by qRT-PCR. Here, we demonstrated that OVA-induced inflammation, lung structural remodeling and collagen deposition in asthmatic mice was notably improved by hydroprednisone treatment or GLCCI1 overexpressing. The expression of GLCCI1 was decreased, while IL-13, periostin and TGF-β1 were increased in the lung tissue of asthmatic mice. Importantly, upregulation of GLCCI1 suppressed the expression of IL-13, periostin and TGF-β1, phosphorylation of Smad2 and Smad3, and extracellular matrix (ECM) deposition-related proteins expression. IL-13-induced upregulation of periostin and TGF-β1 expression, phosphorylation of Smad2 and Smad3, and ECM deposition in airway epithelial cells (AECs) was repressed by GLCCI1 increasing. Furthermore, our results showed that overexpression of GLCCI1 repressed the effect of IL-13 on AECs via inhibiting periostin expression. Overall, our data revealed that GLCCI1 limited the airway remodeling in mice with asthma through inhibiting IL-13/periostin/TGF-β1 signaling pathway. Our data provided a novel target for asthma treatment.
Keywords: Airway remodeling; Asthma; Extracellular matrix deposition; Glucocorticoid induced transcript 1.
Copyright © 2021 Elsevier B.V. All rights reserved.