Self-Healable, Recyclable, and Ultrastrong Adhesive Ionogel for Multifunctional Strain Sensor

ACS Appl Mater Interfaces. 2021 May 5;13(17):20653-20661. doi: 10.1021/acsami.1c02843. Epub 2021 Apr 25.

Abstract

Flexible electronic materials have aroused significant interest due to the need for flexible electronics in a variety of applications. However, several obstacles such as low mechanical properties, interfacial adhesion problems, and nonreusability hinder their rapid development. Here, an ionogel was developed by a one-step photopolymerization of an ionic liquid (IL) with the C═C bond of 1-vinyl-3-butylimidazolium tetrafluoroborate in another ionic liquid solution of 1-butyl-3-methylimidazolium tetrafluoroborate without a chemical cross-linker. The poly(ionic liquid) and the ionic liquid (PIL/IL) were highly compatible and resulted in an extremely uniform, stable, and optically transparent PIL/IL ionogel. In addition, this method also avoided complicated solvent replacement in the preparation processes of common ionogels. Our experimental and theoretical results showed that the reported ionogel integrated excellent mechanical properties, ultrastrong adhesive, self-healability, and recyclability. These remarkable advantages were benefited from the strong electrostatic force and other noncovalent bond interactions in the ionogel system. The unique ionogel presented in this study is therefore an ideal candidate material for self-adhesive and reusable wearable electronics.

Keywords: ionogel; recyclable electronics; self-healing; strain sensor; transparent gel sheet; ultrastrong adhesive.