Magnetostructural relationships in [Ni(dmit)2]- radical anions

Dalton Trans. 2021 May 18;50(19):6620-6630. doi: 10.1039/d1dt00734c.

Abstract

This work explores the relationship between the magnetic properties of salts based on [Ni(dmit)2]- radicals and different arrangements that these radicals can adopt in the crystals, induced by the packing constrains imposed by the counterions. Our analysis is based on difference dedicated configuration interaction calculations on models containing two neighbouring [Ni(dmit)2]- units with different interaction patterns. The amplitude and sign of these through-space interactions can be rationalized on the basis of a valence-only model that essentially analyzes the effective interactions between the atoms carrying the electronic density of singly occupied orbitals (SOMOs). Despite the simplicity of the model, it provides simple rules to predict the nature and the expected amplitude (strong/medium/weak) of the leading interactions in systems based on these [Ni(dmit)2]- radicals.