This article is an extensive collection of scientific literature related to the impact of fertilizers on soil microbial and enzymatic activity. Due to the significance of technology in quantitative and qualitative evaluation of agricultural production, this is a basic problem for the present and future of mankind, where the scientific data being of utmost importance related to the topic. The comparison, including pedo-enzymological evaluation of minerals along with organic fertilization, highlights significant differences between mineral and organic fertilizers, confirming the superiority of complex mineral-organic fertilization. Enzymatic indicators that describe and define the soil quality resulted from enzymatic activities value and provide valuable information regarding the soil fertility status. Moreover, soil enzyme responds to soil management as well as to environmental pollutants. Changes of environmental conditions and pollutants like heavy metals and other toxic substances result in a shift in the biological activity of the soil. These changes can destabilize the soil system and cause a decrease in the nutrient pools. To ensure the improvement of fertilization techniques, the properties of nanoparticles are exploited that can efficiently release nutrients to plant cells. Numerous researches were performed in order to follow the long-term effects of incorporating nanofertilizers into the soil, obtaining an exhaustive overview of this new technology over the development of sustainable agriculture.
Keywords: Agricultural nanotechnologies; Agriculture; Climate; Crop rotation; Fertilizers; Nutrients; Pollutants; Soil; Soil-enzymes.