Significance testing for correlated binary outcome data

Biometrics. 1988 Jun;44(2):505-12.


Multiple logistic regression is a commonly used multivariate technique for analyzing data with a binary outcome. One assumption needed for this method of analysis is the independence of outcome for all sample points in a data set. In ophthalmologic data and other types of correlated binary data, this assumption is often grossly violated and the validity of the technique becomes an issue. A technique has been developed (Rosner, 1984) that utilizes a polychotomous logistic regression model to allow one to look at multiple exposure variables in the context of a correlated binary data structure. This model is an extension of the beta-binomial model, which has been widely used to model correlated binary data when no covariates are present. In this paper, a relationship is developed between the two techniques, whereby it is shown that use of ordinary logistic regression in the presence of correlated binary data can result in true significance levels that are considerably larger than nominal levels in frequently encountered situations. This relationship is explored in detail in the case of a single dichotomous exposure variable. In this case, the appropriate test statistic can be expressed as an adjusted chi-square statistic based on the 2 X 2 contingency table relating exposure to outcome. The test statistic is easily computed as a function of the ordinary chi-square statistic and the correlation between eyes (or more generally between cluster members) for outcome and exposure, respectively. This generalizes some previous results obtained by Koval and Donner (1987, in Festschrift for V. M. Joshi, I. B. MacNeill (ed.), Vol. V, 199-224.(ABSTRACT TRUNCATED AT 250 WORDS)

MeSH terms

  • Biometry / methods*
  • Eye Diseases / physiopathology
  • Humans
  • Models, Theoretical
  • Ophthalmology*
  • Regression Analysis
  • Visual Acuity