Electrical synaptic transmission relies on neuronal gap junctions containing channels constructed by Connexins. While at chemical synapses neurotransmitter-gated ion channels are critically supported by scaffolding proteins, it is unknown if channels at electrical synapses require similar scaffold support. Here, we investigated the functional relationship between neuronal Connexins and Zonula Occludens 1 (ZO1), an intracellular scaffolding protein localized to electrical synapses. Using model electrical synapses in zebrafish Mauthner cells, we demonstrated that ZO1 is required for robust synaptic Connexin localization, but Connexins are dispensable for ZO1 localization. Disrupting this hierarchical ZO1/Connexin relationship abolishes electrical transmission and disrupts Mauthner cell-initiated escape responses. We found that ZO1 is asymmetrically localized exclusively postsynaptically at neuronal contacts where it functions to assemble intercellular channels. Thus, forming functional neuronal gap junctions requires a postsynaptic scaffolding protein. The critical function of a scaffolding molecule reveals an unanticipated complexity of molecular and functional organization at electrical synapses.
Keywords: connexins; developmental biology; electrical coupling; electrical synapse; gap junctions; neuroscience; synapse formation; zebrafish; zo1 zo-1.
Neurons ‘talk’ with each another at junctions called synapses, which can either be chemical or electrical. Communication across a chemical synapse involves a ‘sending’ neuron releasing chemicals that diffuse between the cells and subsequently bind to specialized receptors on the receiving neuron. These complex junctions involve a large number of well-studied molecular actors. Electrical synapses, on the other hand, are believed to be simpler. There, neurons are physically connected via channels formed of ‘connexin’ proteins, which allow electrically charged ions to flow between the cells. However, it is likely that other proteins help to create these structures. In particular, recent evidence shows that without a structurally supporting ‘scaffolding’ protein called ZO1, electrical synapses cannot form in the brain of a tiny freshwater fish known as zebrafish. As their name implies, scaffolding proteins help cells organize their internal structure, for example by anchoring other molecules to the cell membrane. By studying electrical synapses in zebrafish, Lasseigne, Echeverry, Ijaz, Michel et al. now show that these structures are more complex than previously assumed. In particular, the experiments reveal that ZO1 proteins are only present on one side of electrical synapses; despite their deceptively symmetrical anatomical organization, these junctions can be asymmetric, like their chemical cousins. The results also show that ZO1 must be present for connexins to gather at electrical synapses, whereas the converse is not true. This suggests that when a new electrical synapse forms, ZO1 moves into position first: it then recruits or stabilizes connexins to form the channels connecting the two cells. In many animals with a spine, electrical synapses account for about 20% of all neural junctions. Understanding how these structures form and work could help to find new treatments for disorders linked to impaired electrical synapses, such as epilepsy.
© 2021, Lasseigne et al.