Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jul 1;78(7):726-734.
doi: 10.1001/jamapsychiatry.2021.0493.

Racial/Ethnic Disparities in the Performance of Prediction Models for Death by Suicide After Mental Health Visits

Affiliations

Racial/Ethnic Disparities in the Performance of Prediction Models for Death by Suicide After Mental Health Visits

R Yates Coley et al. JAMA Psychiatry. .

Abstract

Importance: Clinical prediction models estimated with health records data may perpetuate inequities.

Objective: To evaluate racial/ethnic differences in the performance of statistical models that predict suicide.

Design, setting, and participants: In this diagnostic/prognostic study, performed from January 1, 2009, to September 30, 2017, with follow-up through December 31, 2017, all outpatient mental health visits to 7 large integrated health care systems by patients 13 years or older were evaluated. Prediction models were estimated using logistic regression with LASSO variable selection and random forest in a training set that contained all visits from a 50% random sample of patients (6 984 184 visits). Performance was evaluated in the remaining 6 996 386 visits, including visits from White (4 031 135 visits), Hispanic (1 664 166 visits), Black (578 508 visits), Asian (313 011 visits), and American Indian/Alaskan Native (48 025 visits) patients and patients without race/ethnicity recorded (274 702 visits). Data analysis was performed from January 1, 2019, to February 1, 2021.

Exposures: Demographic, diagnosis, prescription, and utilization variables and Patient Health Questionnaire 9 responses.

Main outcomes and measures: Suicide death in the 90 days after a visit.

Results: This study included 13 980 570 visits by 1 433 543 patients (64% female; mean [SD] age, 42 [18] years. A total of 768 suicide deaths were observed within 90 days after 3143 visits. Suicide rates were highest for visits by patients with no race/ethnicity recorded (n = 313 visits followed by suicide within 90 days, rate = 5.71 per 10 000 visits), followed by visits by Asian (n = 187 visits followed by suicide within 90 days, rate = 2.99 per 10 000 visits), White (n = 2134 visits followed by suicide within 90 days, rate = 2.65 per 10 000 visits), American Indian/Alaskan Native (n = 21 visits followed by suicide within 90 days, rate = 2.18 per 10 000 visits), Hispanic (n = 392 visits followed by suicide within 90 days, rate = 1.18 per 10 000 visits), and Black (n = 65 visits followed by suicide within 90 days, rate = 0.56 per 10 000 visits) patients. The area under the curve (AUC) and sensitivity of both models were high for White, Hispanic, and Asian patients and poor for Black and American Indian/Alaskan Native patients and patients without race/ethnicity recorded. For example, the AUC for the logistic regression model was 0.828 (95% CI, 0.815-0.840) for White patients compared with 0.640 (95% CI, 0.598-0.681) for patients with unrecorded race/ethnicity and 0.599 (95% CI, 0.513-0.686) for American Indian/Alaskan Native patients. Sensitivity at the 90th percentile was 62.2% (95% CI, 59.2%-65.0%) for White patients compared with 27.5% (95% CI, 21.0%-34.7%) for patients with unrecorded race/ethnicity and 10.0% (95% CI, 0%-23.0%) for Black patients. Results were similar for random forest models, with an AUC of 0.812 (95% CI, 0.800-0.826) for White patients compared with 0.676 (95% CI, 0.638-0.714) for patients with unrecorded race/ethnicity and 0.642 (95% CI, 0.579-0.710) for American Indian/Alaskan Native patients and sensitivities at the 90th percentile of 52.8% (95% CI, 50.0%-55.8%) for White patients, 29.3% (95% CI, 22.8%-36.5%) for patients with unrecorded race/ethnicity, and 6.7% (95% CI, 0%-16.7%) for Black patients.

Conclusions and relevance: These suicide prediction models may provide fewer benefits and more potential harms to American Indian/Alaskan Native or Black patients or those with undrecorded race/ethnicity compared with White, Hispanic, and Asian patients. Improving predictive performance in disadvantaged populations should be prioritized to improve, rather than exacerbate, health disparities.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest Disclosures: Dr Shortreed reported having received grants from Syneos Health, which represented a consortium of pharmaceutical companies carrying out US Food and Drug Administration–mandated studies regarding the safety of extended-release opioids outside the submitted work. No other disclosures were reported.

Figures

Figure.
Figure.. Receiver Operating Characteristic Curves for Suicide Predictions
Predictions from logistic regression with LASSO (A) and random forest (B) prediction models for racial/ethnic subgroups.

Similar articles

Cited by

References

    1. Matheny M, Israni ST, Ahmed M, Whicher D. Artificial Intelligence in Health Care: The Hope, the Hype, the Promise, the Peril. National Academy of Medicine. 2020:94-97.
    1. Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med. 2019;380(14):1347-1358. doi:10.1056/NEJMra1814259 - DOI - PubMed
    1. Rajkomar A, Hardt M, Howell MD, Corrado G, Chin MH. Ensuring fairness in machine learning to advance health equity. Ann Intern Med. 2018;169(12):866-872. doi:10.7326/M18-1990 - DOI - PMC - PubMed
    1. Parikh RB, Teeple S, Navathe AS. Addressing bias in artificial intelligence in health care. JAMA. 2019;322(24):2377-2378. doi:10.1001/jama.2019.18058 - DOI - PubMed
    1. Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of populations. Science. 2019;366(6464):447-453. doi:10.1126/science.aax2342 - DOI - PubMed

Publication types

MeSH terms