Juvenile hormone drives the maturation of spontaneous mushroom body neural activity and learned behavior

Neuron. 2021 Jun 2;109(11):1836-1847.e5. doi: 10.1016/j.neuron.2021.04.006. Epub 2021 Apr 28.


Mature behaviors emerge from neural circuits sculpted by genetic programs and spontaneous and evoked neural activity. However, how neural activity is refined to drive maturation of learned behavior remains poorly understood. Here, we explore how transient hormonal signaling coordinates a neural activity state transition and maturation of associative learning. We identify spontaneous, asynchronous activity in a Drosophila learning and memory brain region, the mushroom body. This activity declines significantly over the first week of adulthood. Moreover, this activity is generated cell-autonomously via Cacophony voltage-gated calcium channels in a single cell type, α'/β' Kenyon cells. Juvenile hormone, a crucial developmental regulator, acts transiently in α'/β' Kenyon cells during a young adult sensitive period to downregulate spontaneous activity and enable subsequent enhanced learning. Hormone signaling in young animals therefore controls a neural activity state transition and is required for improved associative learning, providing insight into the maturation of circuits and behavior.

Keywords: Drosophila; hormone; learned behavior; maturation; mushroom body; neural activity state; neural circuit; spontaneous neural activity.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Calcium Channels / genetics
  • Calcium Channels / metabolism
  • Calcium Signaling
  • Drosophila Proteins / genetics
  • Drosophila Proteins / metabolism
  • Drosophila melanogaster
  • Juvenile Hormones / metabolism*
  • Learning*
  • Mushroom Bodies / cytology
  • Mushroom Bodies / growth & development
  • Mushroom Bodies / metabolism*
  • Mushroom Bodies / physiology
  • Neurogenesis*
  • Neurons / drug effects
  • Neurons / metabolism
  • Synaptic Transmission


  • Calcium Channels
  • Drosophila Proteins
  • Juvenile Hormones
  • cac protein, Drosophila