Characteristics of the upper airway pressure-flow relationship during sleep

J Appl Physiol (1985). 1988 May;64(5):1930-5. doi: 10.1152/jappl.1988.64.5.1930.


In examining the mechanical properties of the respiratory system during sleep in healthy humans, we observed that the inspiratory pressure-flow relationship of the upper airway was often flow limited and too curvilinear to be predicted by the Rohrer equation. The purposes of this study were 1) to describe a mathematical model that would better define the inspiratory pressure-flow relationship of the upper airway during sleep and 2) to identify the segment of airway responsible for the sleep-related flow limitation. We measured nasal and total supralaryngeal pressure and flow during wakefulness and stage 2 sleep in five healthy male subjects lying supine. A right rectangular hyperbolic equation, V = (alpha P)/(beta + P), where V is flow, P is pressure, alpha is an asymptote for peak flow, and beta is pressure at a flow of alpha/2, was used in its linear form, P/V = (beta/alpha) + (P/alpha). The goodness of fit of the new equation was compared with that for the linearized Rohrer equation P/V = K1 + K2V. During wakefulness the fit of the hyperbolic equation to the actual pressure-flow data was equivalent to or significantly better than that for the Rohrer equation. During sleep the fit of the hyperbolic equation was superior to that for the Rohrer equation. For the whole supralaryngeal airway during sleep, the correlation coefficient for the hyperbolic equation was 0.90 +/- 0.50, and for the Rohrer equation it was 0.49 +/- 0.25. The flow-limiting segment was located within the pharyngeal airway, not in the nose.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Airway Resistance
  • Humans
  • Male
  • Models, Biological
  • Pressure
  • Pulmonary Ventilation*
  • Respiratory Physiological Phenomena*
  • Sleep / physiology*