Activity of Some Plant and Fungal Metabolites towards Aedes albopictus (Diptera, Culicidae)

Toxins (Basel). 2021 Apr 18;13(4):285. doi: 10.3390/toxins13040285.


Aedes albopictus (Skuse) is a widespread mosquito, a vector of important human arboviruses, including Chikungunya, Dengue and Zika. It is an extremely difficult species to control even for the onset of resistances to chemicals insecticides, therefore ecofriendly products are urgently needed. In this study, the activity of Amaryllidaceae alkaloids and some of their semisynthetic derivatives, of 2-methoxy-1,4-naphthoquinone and two analogues, of cyclopaldic acid and epi-epoformin on the survival and development of Ae. albopictus larvae was evaluated. First-instar larval exposure for 24 and 48 h to cyclopaldic acid, resulted in mortality mean per-centage of 82.4 and 96.9 respectively; 1,2-O,O-diacetyllycorine 48h post-treatment caused 84.7% mortality. Larval and pupal duration were proved to decrease significantly when larvae were exposed to cyclopaldic acid, 1,2-O,O-diacetyllycorine and N-methyllycorine iodide. The mean number of third-instar larvae surviving to 2-methyl-1,4-naphthoquinone, 2-hydroxy-1,4-naphthoquinone and 2-methoxy-1,4-naphthoquinone was significantly lower than the number of correspondent control larvae over the time. This study indicated that 1,2-O,O'-diacetyllycorine, N-methyllycorine iodide, cyclopaldic acid and 1,4-naphthoquinone structural derivatives have good potential for developing bioinsecticides for mosquito control programs. The obtained results are of general interest due to the global importance of the seri-ous human diseases such a vector is able to spread.

Keywords: Amaryllidaceae alkaloids; Asian tiger mosquito; benzofuranones; bioinsecticides; larvicidal activity; naphthoquinones.