Strong Ground Motion Sensor Network for Civil Protection Rapid Decision Support Systems

Sensors (Basel). 2021 Apr 17;21(8):2833. doi: 10.3390/s21082833.


Strong motion sensor networks deployed in metropolitan areas are able to provide valuable information for civil protection Decision Support Systems (DSSs) aiming to mitigate seismic risk and earthquake social-economic impact. To this direction, such a network is installed and real-time operated in Chania (Crete Island, Greece), city located in the vicinity of the seismically active south front of the Hellenic Subduction Zone. A blend of both traditional and advanced analysis techniques and interpretation methods of strong ground motion data are presented, studying indicative cases of Chania shaking due to earthquakes in the last couple years. The orientation independent spectral acceleration as well as the spatial distribution of the strong ground motion parameters such as the Peak Ground Acceleration (PGA), Peak Ground Velocity (PGV), Peak Ground Displacement (PGD) and Arias Ιntensity observed at the urban area of Chania are presented with the use of a Geographic Information System (GIS) environment. The results point to the importance of the strong ground motion networks as they can provide valuable information on earthquake hazards prior to and after detrimental seismic events to feed rapid systems supporting civil protection decisions for prevention and emergency response.

Keywords: GIS; PGA; PGD; PGV; arias intensity; decision support system; sensor network; spectral acceleration; strong ground motion.