The Challenges and Strategies of Antisense Oligonucleotide Drug Delivery

Biomedicines. 2021 Apr 16;9(4):433. doi: 10.3390/biomedicines9040433.


Antisense oligonucleotides (ASOs) are used to selectively inhibit the translation of disease-associated genes via Ribonuclease H (RNaseH)-mediated cleavage or steric hindrance. They are being developed as a novel and promising class of drugs targeting a wide range of diseases. Despite the great potential and numerous ASO drugs in preclinical research and clinical trials, there are many limitations to this technology. In this review we will focus on the challenges of ASO delivery and the strategies adopted to improve their stability in the bloodstream, delivery to target sites, and cellular uptake. Focusing on liposomal delivery, we will specifically describe liposome-incorporated growth factor receptor-bound protein-2 (Grb2) antisense oligodeoxynucleotide BP1001. BP1001 is unique because it is uncharged and is essentially non-toxic, as demonstrated in preclinical and clinical studies. Additionally, its enhanced biodistribution makes it an attractive therapeutic modality for hematologic malignancies as well as solid tumors. A detailed understanding of the obstacles that ASOs face prior to reaching their targets and continued advances in methods to overcome them will allow us to harness ASOs' full potential in precision medicine.

Keywords: Grb2; antisense oligonucleotide; drug delivery; liposomes.

Publication types

  • Review