Transport Proteins Enabling Plant Photorespiratory Metabolism

Plants (Basel). 2021 Apr 27;10(5):880. doi: 10.3390/plants10050880.


Photorespiration (PR) is a metabolic repair pathway that acts in oxygenic photosynthetic organisms to degrade a toxic product of oxygen fixation generated by the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase. Within the metabolic pathway, energy is consumed and carbon dioxide released. Consequently, PR is seen as a wasteful process making it a promising target for engineering to enhance plant productivity. Transport and channel proteins connect the organelles accomplishing the PR pathway-chloroplast, peroxisome, and mitochondrion-and thus enable efficient flux of PR metabolites. Although the pathway and the enzymes catalyzing the biochemical reactions have been the focus of research for the last several decades, the knowledge about transport proteins involved in PR is still limited. This review presents a timely state of knowledge with regard to metabolite channeling in PR and the participating proteins. The significance of transporters for implementation of synthetic bypasses to PR is highlighted. As an excursion, the physiological contribution of transport proteins that are involved in C4 metabolism is discussed.

Keywords: C4 photosynthesis; Rubisco; metabolite; photorespiration; photosynthesis; plant; synthetic bypass; transport protein.

Publication types

  • Review