Solution-Processed Stretchable Ag2 S Semiconductor Thin Films for Wearable Self-Powered Nonvolatile Memory

Adv Mater. 2021 Jun;33(23):e2100066. doi: 10.1002/adma.202100066. Epub 2021 Apr 30.

Abstract

Compared with the large plastic deformation observed in ductile metals and organic materials, inorganic semiconductors have limited plasticity (<0.2%) due to their intrinsic bonding characters, restricting their widespread applications in stretchable electronics. Herein, the solution-processed synthesis of ductile α-Ag2 S thin films and fabrication of all-inorganic, self-powered, and stretchable memory devices, is reported. Molecular Ag2 S complex solution is synthesized by chemical reduction of Ag2 S powder, fabricating wafer-scale highly crystalline Ag2 S thin films. The thin films show stretchability due to the intrinsic ductility, sustaining the structural integrity at a tensile strain of 14.9%. Moreover, the fabricated Ag2 S-based resistive random access memory presents outstanding bipolar switching characteristics (Ion /Ioff ratio of ≈105 , operational endurance of 100 cycles, and retention time >106 s) as well as excellent mechanical stretchability (no degradation of properties up to stretchability of 52%). Meanwhile, the device is highly durable under diverse chemical environments and temperatures from -196 to 300 °C, especially maintaining the properties for 168 h in 85% relative humidity and 85 °C. A self-powered memory combined with motion sensors for use as a wearable healthcare monitoring system is demonstrated, offering the potential for designing high-performance wearable electronics that are usable in daily life in a real-world setting.

Keywords: Ag 2S; healthcare monitoring; resistive switching; solution processing; stretchable devices; stretchable semiconductors; thin films.