Comparison of near infrared spectroscopy and Raman spectroscopy for the identification and quantification through MCR-ALS and PLS of peanut oil adulterants

Talanta. 2021 Aug 1:230:122373. doi: 10.1016/j.talanta.2021.122373. Epub 2021 Mar 29.

Abstract

Peanut oil is considered one of the best frying oils, and, consequently there is an increasing worldwide demand. This has led to adulteration practices with unhealthy, synthetic or less expensive oils which raises concerns related with public health safety. Therefore, there is a high need for rapid, versatile, low-cost and reliable analytical methods, such as vibrational spectroscopic techniques, capable of identifying and quantifying the respective adulteration. The objective of this work focused on the application of two different vibrational spectroscopic techniques (NIR and Raman spectroscopy) for the qualitative and quantitative analysis of two adulterants in pure peanut oil, namely corn oil and vegetable oil. For the quantitative analysis two chemometric methods, namely PLS and MCR-ALS, were compared while for the qualitative analysis only MCR-ALS was tested. The analysis of peanut oil adulteration was performed by adding each adulterant individually and also by blending the peanut oil with both adulterants simultaneously. A total of 69 samples were analyzed, which was comprised by two sets of 20 samples each containing just one adulterant and another set of 29 samples containing both adulterants. Several pre-processing techniques were tested. The qualitative analysis performed by MCR-ALS allowed the identification of all the adulterants using both NIR and Raman spectra, with correlation coefficients higher than 0.99. For the quantification, none of the chemometric methods as well as the vibrational spectroscopic techniques tested showed significant better results. Nonetheless, the determination coefficients and the relative percentage errors for the validation samples for most of the developed models were higher than 0.98 and lower than 15%, respectively. Concluding, MCR-ALS was capable of correctly extracting the spectral profiles of all the adulterants in very complex mixtures (as the pure spectra of the adulterants and peanut oil are very similar) and both MCR-ALS and PLS were able to quantify the adulteration with low RE. To the best of our knowledge, it was the first time that MCR-ALS was used for the qualitative analysis of peanut oil adulteration (with all adulterants added simultaneously) and MCR-ALS and PLS were compared for the quantification of peanut oil adulteration using both NIR and Raman spectroscopy.

Keywords: Chemometrics; Near-infrared spectroscopy; PLS; Peanut oil adulteration; Raman spectroscopy MCR-ALS.