Ultrafast Electron Transfer from CdSe Quantum Dots to an [FeFe]-Hydrogenase Mimic

J Phys Chem Lett. 2021 May 13;12(18):4385-4391. doi: 10.1021/acs.jpclett.1c01028. Epub 2021 May 3.

Abstract

The combination of CdSe nanoparticles as photosensitizers with [FeFe]-hydrogenase mimics is known to result in efficient systems for light-driven hydrogen generation with reported turnover numbers in the order of 104-106. Nevertheless, little is known about the details of the light-induced charge-transfer processes. Here, we investigate the time scale of light-induced electron transfer kinetics for a simple model system consisting of CdSe quantum dots (QDs) of 2.0 nm diameter and a simple [FeFe]-hydrogenase mimic adsorbed to the QD surface under noncatalytic conditions. Our (time-resolved) spectroscopic investigation shows that both hot electron transfer on a sub-ps time scale and band-edge electron transfer on a sub-10 ps time scale from photoexcited QDs to adsorbed [FeFe]-hydrogenase mimics occur. Fast recombination via back electron transfer is observed in the absence of a sacrificial agent or protons which, under real catalytic conditions, would quench remaining holes or could stabilize the charge separation, respectively.