Periplocin and cardiac glycosides suppress the unfolded protein response

Sci Rep. 2021 May 4;11(1):9528. doi: 10.1038/s41598-021-89074-x.

Abstract

The unfolded protein response (UPR) controls protein homeostasis through transcriptional and translational regulation. However, dysregulated UPR signaling has been associated with the pathogenesis of many human diseases. Therefore, the compounds modulating UPR may provide molecular insights for these pathologies in the context of UPR. Here, we screened small-molecule compounds that suppress UPR, using a library of Myanmar wild plant extracts. The screening system to track X-box binding protein 1 (XBP1) splicing activity revealed that the ethanol extract of the Periploca calophylla stem inhibited the inositol-requiring enzyme 1 (IRE1)-XBP1 pathway. We isolated and identified periplocin as a potent inhibitor of the IRE1-XBP1 axis. Periplocin also suppressed other UPR axes, protein kinase R-like endoplasmic reticulum kinase (PERK), and activating transcription factor 6 (ATF6). Examining the structure-activity relationship of periplocin revealed that cardiac glycosides also inhibited UPR. Moreover, periplocin suppressed the constitutive activation of XBP1 and exerted cytotoxic effects in the human multiple myeloma cell lines, AMO1 and RPMI8226. These results reveal a novel suppressive effect of periplocin or the other cardiac glycosides on UPR regulation, suggesting that these compounds will contribute to our understanding of the pathological or physiological importance of UPR.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cardiac Glycosides / pharmacology*
  • Cell Line
  • Cell Line, Tumor
  • Endoplasmic Reticulum / drug effects
  • Endoplasmic Reticulum / metabolism
  • HEK293 Cells
  • Humans
  • Periploca / chemistry
  • Plant Extracts / pharmacology
  • RNA Splicing / drug effects
  • Saponins / pharmacology*
  • Signal Transduction / drug effects
  • Small Molecule Libraries / pharmacology
  • Unfolded Protein Response / drug effects*
  • X-Box Binding Protein 1 / metabolism

Substances

  • Cardiac Glycosides
  • Plant Extracts
  • Saponins
  • Small Molecule Libraries
  • X-Box Binding Protein 1
  • periplocin