Personalized Analytics and a Wearable Biosensor Platform for Early Detection of COVID-19 Decompensation (DeCODe): Protocol for the Development of the COVID-19 Decompensation Index

JMIR Res Protoc. 2021 May 26;10(5):e27271. doi: 10.2196/27271.


Background: During the COVID-19 pandemic, novel digital health technologies have the potential to improve our understanding of SARS-CoV-2 and COVID-19, improve care delivery, and produce better health outcomes. The National Institutes of Health called on digital health leaders to contribute to a high-quality data repository that will support researchers to make discoveries that are otherwise not possible with small, limited data sets.

Objective: To this end, we seek to develop a COVID-19 digital biomarker for early detection of physiological exacerbation or decompensation. We propose the development and validation of a COVID-19 decompensation Index (CDI) in a 2-phase study that builds on existing wearable biosensor-derived analytics generated by physIQ's end-to-end cloud platform for continuous physiological monitoring with wearable biosensors. This effort serves to achieve two primary objectives: (1) to collect adequate data to help develop the CDI and (2) to collect rich deidentified clinical data correlating with outcomes and symptoms related to COVID-19 progression. Our secondary objectives include evaluation of the feasibility and usability of pinpointIQ, a digital platform through which data are gathered, analyzed, and displayed.

Methods: This is a prospective, nonrandomized, open-label, 2-phase study. Phase I will involve data collection for the digital data hub of the National Institutes of Health as well as data to support the preliminary development of the CDI. Phase II will involve data collection for the hub and contribute to continued refinement and validation of the CDI. While this study will focus on the development of a CDI, the digital platform will also be evaluated for feasibility and usability while clinicians deliver care to continuously monitored patients enrolled in the study.

Results: Our target CDI will be a binary classifier trained to distinguish participants with and those without decompensation. The primary performance metric for CDI will be the area under the receiver operating characteristic curve with a minimum performance criterion of ≥0.75 (α=.05; power [1-β]=0.80). Furthermore, we will determine the sex or gender and race or ethnicity of the participants, which would account for differences in the CDI performance, as well as the lead time-time to predict decompensation-and its relationship with the ultimate disease severity based on the World Health Organization COVID-19 ordinal scale.

Conclusions: Using machine learning techniques on a large data set of patients with COVID-19 could provide valuable insights into the pathophysiology of COVID-19 and a digital biomarker for COVID-19 decompensation. Through this study, we intend to develop a tool that can uniquely reflect physiological data of a diverse population and contribute to high-quality data that will help researchers better understand COVID-19.

Trial registration: NCT04575532;

International registered report identifier (irrid): DERR1-10.2196/27271.

Keywords: COVID-19; analytic; artificial intelligence; biomarker; cloud; decompensation; detection; development; index; monitoring; outcome; remote monitoring; symptom validation; wearable.

Associated data