The effects of secondary iron overload and iron chelation on a radiation-induced acute myeloid leukemia mouse model

BMC Cancer. 2021 May 6;21(1):509. doi: 10.1186/s12885-021-08259-9.

Abstract

Background: Patients with myelodysplastic syndrome (MDS) require chronic red blood cell (RBC) transfusion due to anemia. Multiple RBC transfusions cause secondary iron overload and subsequent excessive generation of reactive oxygen species (ROS), which leads to mutations, cell death, organ failure, and inferior disease outcomes. We hypothesize that iron loading promotes AML development by increasing oxidative stress and disrupting important signaling pathways in the bone marrow cells (BMCs). Conversely, iron chelation therapy (ICT) may reduce AML risk by lowering iron burden in the iron-loaded animals.

Methods: We utilized a radiation-induced acute myeloid leukemia (RI-AML) animal model. Iron overload was introduced via intraperitoneal injection of iron dextran, and iron chelation via oral gavage of deferasirox. A total of 86 irradiated B6D2F1 mice with various levels of iron burden were monitored for leukemia development over a period of 70 weeks. The Kaplan-Meier estimator was utilized to assess AML free survival. In addition, a second cohort of 30 mice was assigned for early analysis at 5 and 7 months post-irradiation. The BMCs of the early cohort were assessed for alterations of signaling pathways, DNA damage response and gene expression. Statistical significance was established using Student's t-test or ANOVA.

Results: Iron loading in irradiated B6D2F1 mice accelerated RI-AML development. However, there was a progressive decrease in AML risk for irradiated mice with increase in iron burden from 7.5 to 15 to 30 mg. In addition, ICT decreased AML incidence in the 7.5 mg iron-loaded irradiated mice, while AML onset was earlier for the 30 mg iron-loaded irradiated mice that received ICT. Furthermore, analysis of BMCs from irradiated mice at earlier intervals revealed accelerated dysregulation of signaling pathways upon iron loading, while ICT partially mitigated the effects.

Conclusions: We concluded that iron is a promoter of leukemogenesis in vivo up to a peak iron dose, but further iron loading decreases AML risk by increasing cell death. ICT can partially mitigate the adverse effects of iron overload, and to maximize its benefit this intervention should be undertaken prior to the development of extreme iron overload.

Keywords: Iron chelation; Leukemogenesis; Myelodysplastic syndrome; Radiation induced acute myeloid leukemia; Secondary iron overload.

MeSH terms

  • Animals
  • Disease Models, Animal
  • Erythrocyte Transfusion / adverse effects
  • Iron Chelating Agents / therapeutic use*
  • Iron Overload / complications*
  • Leukemia, Myeloid, Acute / etiology*
  • Leukemia, Radiation-Induced / etiology*
  • Mice

Substances

  • Iron Chelating Agents