Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr 23:12:650696.
doi: 10.3389/fphys.2021.650696. eCollection 2021.

Systolic and Diastolic Functions After a Brief Acute Bout of Mild Exercise in Normobaric Hypoxia

Affiliations
Free PMC article

Systolic and Diastolic Functions After a Brief Acute Bout of Mild Exercise in Normobaric Hypoxia

Sara Magnani et al. Front Physiol. .
Free PMC article

Abstract

Acute hypoxia (AH) is a challenge to the homeostasis of the cardiovascular system, especially during exercise. Research in this area is scarce. We aimed to ascertain whether echocardiographic, Doppler, and tissue Doppler measures were able to detect changes in systolic and diastolic functions during the recovery after mild exercise in AH. Twelve healthy males (age 33.5 ± 4.8 years) completed a cardiopulmonary test on an electromagnetically braked cycle-ergometer to determine their maximum workload (Wmax). On separate days, participants performed randomly assigned two exercise sessions consisting in 3 min pedalling at 30% of Wmax: (1) one test was conducted in normoxia (NORMO) and (2) one in normobaric hypoxia with FiO2 set to 13.5% (HYPO). Hemodynamics were assessed with an echocardiographic system. The main result was that the HYPO session increased parameters related to myocardial contractility such as pre-ejection period and systolic myocardial velocity with respect to the NORMO test. Moreover, the HYPO test enhanced early transmitral filling peak velocities. No effects were detected for left ventricular volumes, as end-diastolic, end-systolic, and stroke volume were similar between the NORMO and the HYPO test. Results of the present investigation support the hypothesis that a brief, mild exercise bout in acute normobaric hypoxia does not impair systolic or diastolic functions. Rather, it appears that stroke volume is well preserved and that systolic and early diastolic functions are enhanced by exercise in hypoxia.

Keywords: blood pressure; cardiac pre-load; echocardiography; myocardial contractility; tissue Doppler.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
Scatter plot graphs of levels of blood O2 saturation (SO2, panel A), heart rate (HR, panel B), mean arterial pressure (MAP, panel C), pre-ejection period (PEP, panel D), ventricular ejection time (VET, panel E), and diastolic time (DT, panel F) during the recovery from sessions of exercise in normoxia (NORMO) and in normobaric hypoxia with a FiO2 of 13.5% (HYPO). N = 12. *p < 0.05 vs. NORMO test.
Figure 2
Figure 2
Scatter plot graphs of levels of end-systolic volume (ESV, panel A), end-diastolic volume (EDV, panel B), ejection fraction (EF, panel C), and stroke volume (SV, panel D) during the recovery from sessions of exercise in normoxia (NORMO) and in normobaric hypoxia with a FiO2 of 13.5% (HYPO). N = 12.
Figure 3
Figure 3
Scatter plot graphs of levels of early transmitral filling peak velocity (Evel, panel A), late transmitral filling peak velocity (Avel, panel B), their ratio (E/A, panel C), and early diastolic mitral valve motion velocity (Em, panel D) during the recovery from sessions of exercise in normoxia (NORMO) and in normobaric hypoxia with a FiO2 of 13.5% (HYPO). N = 12. *p < 0.05 vs. NORMO test.
Figure 4
Figure 4
Scatter plot graphs of levels of late diastolic mitral valve motion velocity (Am, panel A), ratio between early and late diastolic mitral valve motion velocities (Em/Am, panel B), systolic myocardial velocity (Sm, panel C), and ratio between early transmitral filling peak and early mitral valve diastolic velocities (Evel/Em, panel D) during the recovery from sessions of exercise in normoxia (NORMO) and in normobaric hypoxia with a FiO2 of 13.5% (HYPO). N = 12. *p < 0.05 vs. NORMO test.

Similar articles

Cited by

References

    1. Allemann Y., Rotter M., Hutter D., Lipp E., Sartori C., Scherrer U., et al. . (2004). Impact of acute hypoxic pulmonary hypertension on LV diastolic function in healthy mountaineers at high altitude. Am. J. Physiol. Heart Circ. Physiol. 286, H856–H862. 10.1152/ajpheart.00518.2003, PMID: - DOI - PubMed
    1. Arutunyan A. H. (2015). Atrioventricular plane displacement is the sole mechanism of atrial and ventricular refill. Am. J. Physiol. Heart Circ. Physiol. 308, H1317–H1320. 10.1152/ajpheart.00058.2015, PMID: - DOI - PubMed
    1. Bassareo P. P., Tumbarello R., Piras A., Mercuro G. (2010). Evaluation of regional myocardial function by Doppler tissue imaging in univentricular heart after successful Fontan repair. Echocardiography 27, 702–708. 10.1111/j.1540-8175.2009.01085.x, PMID: - DOI - PubMed
    1. Beaver W. L., Wasserman K., Whipp B. J. (1986). A new method for detecting anaerobic threshold by gas exchange. J. Appl. Physiol. 60, 2020–2027. 10.1152/jappl.1986.60.6.2020, PMID: - DOI - PubMed
    1. Berg J., Jablonowski R., Nordlund D., Kopic S., Bidhult S., Xanthis C. G., et al. . (2020). Decreased atrioventricular plane displacement after acute myocardial infarction yields a concomitant decrease in stroke volume. J. Appl. Physiol. 128, 252–263. 10.1152/japplphysiol.00480.2019, PMID: - DOI - PMC - PubMed

LinkOut - more resources