Limonin as a Starting Point for the Construction of Compounds with High Scaffold Diversity

Angew Chem Int Ed Engl. 2021 Jul 12;60(29):16119-16128. doi: 10.1002/anie.202104228. Epub 2021 Jun 10.

Abstract

Structurally complex natural products have been a fruitful source for the discovery and development of new drugs. In an effort to construct a compound collection populated by architecturally complex members with unique scaffolds, we have used the natural product limonin as a starting point. Limonin is an abundant triterpenoid natural product and, through alteration of its heptacyclic core ring system using short synthetic sequences, a collection of 98 compounds was created, including multiple members with novel ring systems. The reactions leveraged in the construction of these compounds include novel ring cleavage, rearrangements, and cyclizations, and this work is highlighted by the discovery of a novel B-ring cleavage reaction, a unique B/C-ring rearrangement, an atypical D-ring cyclization, among others. Computational analysis shows that 52 different scaffolds/ring systems were produced during the course of this work, of which 36 are unprecedented. Phenotypic screening and structure-activity relationships identified compounds with activity against a panel of cancer cell lines.

Keywords: anticancer agents; drug discovery; limonin; natural products; scaffold diversity.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Cyclization
  • Drug Design*
  • Limonins / chemistry*
  • Stereoisomerism

Substances

  • Limonins
  • limonin