Mesenchymal stromal cells reduce evidence of lung injury in patients with ARDS

JCI Insight. 2021 Jun 22;6(12):e148983. doi: 10.1172/jci.insight.148983.

Abstract

BACKGROUNDWhether airspace biomarkers add value to plasma biomarkers in studying acute respiratory distress syndrome (ARDS) is not well understood. Mesenchymal stromal cells (MSCs) are an investigational therapy for ARDS, and airspace biomarkers may provide mechanistic evidence for MSCs' impact in patients with ARDS.METHODSWe carried out a nested cohort study within a phase 2a safety trial of treatment with allogeneic MSCs for moderate-to-severe ARDS. Nonbronchoscopic bronchoalveolar lavage and plasma samples were collected 48 hours after study drug infusion. Airspace and plasma biomarker concentrations were compared between the MSC (n = 17) and placebo (n = 10) treatment arms, and correlation between the two compartments was tested. Airspace biomarkers were also tested for associations with clinical and radiographic outcomes.RESULTSCompared with placebo, MSC treatment significantly reduced airspace total protein, angiopoietin-2 (Ang-2), IL-6, and soluble TNF receptor-1 concentrations. Plasma biomarkers did not differ between groups. Each 10-fold increase in airspace Ang-2 was independently associated with 6.7 fewer days alive and free of mechanical ventilation (95% CI, -12.3 to -1.0, P = 0.023), and each 10-fold increase in airspace receptor for advanced glycation end-products (RAGE) was independently associated with a 6.6-point increase in day 3 radiographic assessment of lung edema score (95% CI, 2.4 to 10.8, P = 0.004).CONCLUSIONMSCs reduced biological evidence of lung injury in patients with ARDS. Biomarkers from the airspaces provide additional value for studying pathogenesis, treatment effects, and outcomes in ARDS.TRIAL REGISTRATIONClinicalTrials.gov NCT02097641.FUNDINGNational Heart, Lung, and Blood Institute.

Keywords: Cytokines; Endothelial cells; Pulmonology; Respiration; Stem cells.

Publication types

  • Clinical Trial, Phase II
  • Multicenter Study
  • Randomized Controlled Trial
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Cohort Studies
  • Cytokines / metabolism
  • Double-Blind Method
  • Female
  • Humans
  • Lung Injury
  • Male
  • Mesenchymal Stem Cell Transplantation* / adverse effects
  • Mesenchymal Stem Cell Transplantation* / methods
  • Middle Aged
  • Respiratory Distress Syndrome* / metabolism
  • Respiratory Distress Syndrome* / physiopathology
  • Respiratory Distress Syndrome* / therapy
  • Treatment Outcome

Substances

  • Cytokines

Associated data

  • ClinicalTrials.gov/NCT02097641