Synthesis, molecular docking, and in silico ADMET studies of 4-benzyl-1-(2,4,6-trimethyl-benzyl)-piperidine: Potential Inhibitor of SARS-CoV2

Bioorg Chem. 2021 Jul:112:104967. doi: 10.1016/j.bioorg.2021.104967. Epub 2021 May 5.

Abstract

Nowadays, over 200 countries face a wellbeing emergency because of epidemiological disease COVID-19 caused by the SARS-CoV-2 virus. It will cause a very high effect on the world's economy and the worldwide health sector. The present work is an investigation of the newly synthesized 4-benzyl-1-(2,4,6-trimethyl-benzyl)-piperidine (M1BZP) molecule's inhibitory potential against important protein targets of SARS-CoV-2 using computational approaches. M1BZP crystallizes in monoclinic type with P1211 space group. For the title compound M1BZP, spectroscopic characterization like 1H NMR, 13C NMR, FTIR, were carried out. The geometry of the compound had been optimized by the DFT method and its results were compared with the X-ray diffraction data. The calculated energies for the Highest Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO) showed the stability and reactivity of the title compound. Intermolecular interactions in the crystal network were determined using Hirshfeld surface analyses. The molecular electrostatic potential (MEP) picture was drawn using the same level of theory to visualize the chemical reactivity and charge distribution on the molecule. Molecular docking study performed for the synthesized compound revealed an efficient interaction with the COVID-19 protease and resulted in good activities. We hope the present study would help workers in the field to develop potential vaccines and therapeutics against the novel coronavirus. Virtual ADME studies were carried out as well and a relationship between biological, electronic, and physicochemical qualifications of the target compound was determined. Toxicity prediction by computational technique for the title compound was also carried out.

Keywords: ADME studies; Crystal structure; DFT; Molecular docking; SARS-COV2.

MeSH terms

  • Adenosine Monophosphate / analogs & derivatives
  • Adenosine Monophosphate / chemistry
  • Adenosine Monophosphate / metabolism
  • Alanine / analogs & derivatives
  • Alanine / chemistry
  • Alanine / metabolism
  • Antiviral Agents / chemical synthesis
  • Antiviral Agents / chemistry
  • Antiviral Agents / metabolism*
  • Binding Sites
  • COVID-19 / pathology
  • COVID-19 / virology
  • Crystallography, X-Ray
  • Density Functional Theory
  • Half-Life
  • Humans
  • Molecular Conformation
  • Molecular Docking Simulation
  • Piperidines / chemical synthesis
  • Piperidines / chemistry*
  • Piperidines / metabolism
  • SARS-CoV-2 / isolation & purification
  • SARS-CoV-2 / metabolism*
  • Spike Glycoprotein, Coronavirus / antagonists & inhibitors*
  • Spike Glycoprotein, Coronavirus / metabolism
  • Viral Matrix Proteins / antagonists & inhibitors
  • Viral Matrix Proteins / metabolism

Substances

  • Antiviral Agents
  • Piperidines
  • Spike Glycoprotein, Coronavirus
  • Viral Matrix Proteins
  • membrane protein, SARS-CoV-2
  • spike protein, SARS-CoV-2
  • remdesivir
  • Adenosine Monophosphate
  • Alanine