CRISPR Enzyme Kinetics for Molecular Diagnostics

Anal Chem. 2021 May 25;93(20):7456-7464. doi: 10.1021/acs.analchem.1c00525. Epub 2021 May 12.

Abstract

CRISPR-diagnostic assays have gained significant interest in the last few years. This interest has grown rapidly during the current COVID-19 pandemic, where CRISPR-diagnostics have been frontline contenders for rapid testing solutions. This surge in CRISPR-diagnostic research prompts the following question: what exactly are the achievable limits of detection and associated assay times enabled by the kinetics of enzymes such as Cas12 and Cas13? To explore this question, we here present a model based on Michaelis-Menten enzyme kinetics theory applied to CRISPR enzymes. We use the model to develop analytical solutions for reaction kinetics and develop back-of-the-envelope criteria to validate and check for consistency in reported enzyme kinetic parameters. We applied our analyses to all studies known to us, which report Michaelis-Menten-type kinetic data for CRISPR-associated enzymes. These studies include all subtypes of Cas12 and Cas13 and orthologs. We found all but one study clearly violate at least two of our three rules and therefore present data that violate basic physical limits. We performed an experimental study of reaction kinetics of LbCas12a with both ssDNA and dsDNA activators and use these data to validate our model and its predicted scaling. The validated model is used to explore CRISPR reaction time scales and the degree of reaction completion for practically relevant target concentrations applicable to CRISPR-diagnostic assays. The results have broad implications for achievable limits of detection and assay times of emerging, amplification-free CRISPR-detection methods.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • COVID-19*
  • CRISPR-Cas Systems / genetics
  • Clustered Regularly Interspaced Short Palindromic Repeats*
  • Humans
  • Kinetics
  • Pandemics
  • Pathology, Molecular
  • SARS-CoV-2