Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Mar:103:101997.
doi: 10.1016/j.hal.2021.101997. Epub 2021 Feb 18.

Allelochemicals of Alexandrium minutum: Kinetics of membrane disruption and photosynthesis inhibition in a co-occurring diatom

Affiliations
Free article

Allelochemicals of Alexandrium minutum: Kinetics of membrane disruption and photosynthesis inhibition in a co-occurring diatom

Marc Long et al. Harmful Algae. 2021 Mar.
Free article

Abstract

Allelopathy is an efficient strategy by which some microalgae can outcompete other species. Allelochemicals from the toxic dinoflagellate Alexandrium minutum have deleterious effects on diatoms, inhibiting metabolism and photosynthesis and therefore give a competitive advantage to the dinoflagellate. The precise mechanisms of allelochemical interactions and the molecular target of allelochemicals remain however unknown. To understand the mechanisms, the short-term effects of A. minutum allelochemicals on the physiology of the diatom Chaetoceros muelleri were investigated. The effects of a culture filtrate were measured on the diatom cytoplasmic membrane integrity (polarity and permeability) using flow-cytometry and on the photosynthetic performance using fluorescence and absorption spectroscopy. Within 10 min, the unknown allelochemicals induced a depolarization of the cytoplasmic membranes and an impairment of photosynthesis through the inhibition of the plastoquinone-mediated electron transfer between photosystem II and cytochrome b6f. At longer time of exposure, the cytoplasmic membranes were permeable and the integrity of photosystems I, II and cytochrome b6f was compromised. Our demonstration of the essential role of membranes in this allelochemical interaction provides new insights for the elucidation of the nature of the allelochemicals. The relationship between cytoplasmic membranes and the inhibition of the photosynthetic electron transfer remains however unclear and warrants further investigation.

Keywords: Alexandrium minutum; Allelochemicals; Allelopathy; Chaetoceros muelleri; Membrane; Photosynthesis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources