Effects of Ocean Acidification on Transcriptomes in Asian Seabass Juveniles

Mar Biotechnol (NY). 2021 Jun;23(3):445-455. doi: 10.1007/s10126-021-10036-5. Epub 2021 May 16.

Abstract

Ocean acidification is changing the fate of marine organisms. It is essential to predict the biological responses and evolutionary processes driven by ocean acidification, to maintain the equilibrium of the marine ecosystem and to facilitate aquaculture. However, how marine organisms, particularly the marine fish species, respond to ocean acidification, is still poorly understood. Consequences of ocean acidification on finfish aquaculture are largely not well known. We studied the effects of ocean acidification for 7 days on growth, behaviour and gene expression profiles in the brain, gill and kidney of Asian seabass juveniles. Results showed that growth and behaviour were not affected by short-term ocean acidification. We found tissue-specific differentially expressed genes (DEGs) involving many molecular processes, such as organ development, growth, muscle development, ion homeostasis and neurogenesis and development, as well as behaviours. Most of the DEGs, which were functionally enriched in ion homeostasis, were related to calcium transport, followed by sodium/potassium channels. We found that genes associated with neurogenesis and development were significantly enriched, implying that ocean acidification has also adversely affected the neural regulatory mechanism. Our results indicate that although the short-term ocean acidification does not cause obvious phenotypic and behavioural changes, it causes substantial changes of gene expressions in all three analysed tissues. All these changes of gene expressions may eventually affect physiological fitness. The DEGs identified here should be further investigated to discover DNA markers associated with adaptability to ocean acidification to improve fish's capability to adapt to ocean acidification.

Keywords: Adaptation; Finfish; Gene; Genetic improvement; Ion homeostasis; Ocean acidification.

MeSH terms

  • Animals
  • Aquaculture
  • Behavior, Animal
  • Brain / metabolism
  • Carbon Dioxide
  • Gills / metabolism
  • Hydrogen-Ion Concentration
  • Kidney / metabolism
  • Perciformes / genetics
  • Perciformes / growth & development*
  • Perciformes / metabolism
  • Seawater / chemistry*
  • Transcriptome*

Substances

  • Carbon Dioxide