Personalized Proteome: Comparing Proteogenomics and Open Variant Search Approaches for Single Amino Acid Variant Detection

J Proteome Res. 2021 Jun 4;20(6):3353-3364. doi: 10.1021/acs.jproteome.1c00264. Epub 2021 May 17.

Abstract

Discovery of variant peptides such as a single amino acid variant (SAAV) in shotgun proteomics data is essential for personalized proteomics. Both the resolution of shotgun proteomics methods and the search engines have improved dramatically, allowing for confident identification of SAAV peptides. However, it is not yet known if these methods are truly successful in accurately identifying SAAV peptides without prior genomic information in the search database. We studied this in unprecedented detail by exploiting publicly available long-read RNA sequences and shotgun proteomics data from the gold standard reference cell line NA12878. Searching spectra from this cell line with the state-of-the-art open modification search engine ionbot against carefully curated search databases resulted in 96.7% false-positive SAAVs and an 85% lower true positive rate than searching with peptide search databases that incorporate prior genetic information. While adding genetic variants to the search database remains indispensable for correct peptide identification, inclusion of long-read RNA sequences in the search database contributes only 0.3% new peptide identifications. These findings reveal the differences in SAAV detection that result from various approaches, providing guidance to researchers studying SAAV peptides and developers of peptide spectrum identification tools.

Keywords: deep proteomics; direct RNA sequencing; long-read RNA sequence; open search.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acids
  • Databases, Protein
  • Proteogenomics*
  • Proteome / genetics
  • Proteomics
  • Search Engine

Substances

  • Amino Acids
  • Proteome