LTR-retrotransposon dynamics in common fig (Ficus carica L.) genome

BMC Plant Biol. 2021 May 17;21(1):221. doi: 10.1186/s12870-021-02991-x.

Abstract

Background: Long Terminal Repeat retrotransposons (LTR-REs) are repetitive DNA sequences that constitute a large part of the genome. The improvement of sequencing technologies and sequence assembling strategies has achieved genome sequences with much greater reliability than those of the past, especially in relation to repetitive DNA sequences.

Results: In this study, we analysed the genome of Ficus carica L., obtained using third generation sequencing technologies and recently released, to characterise the complete complement of full-length LTR-REs to study their dynamics during fig genome evolution. A total of 1867 full-length elements were identified. Those belonging to the Gypsy superfamily were the most abundant; among these, the Chromovirus/Tekay lineage was the most represented. For the Copia superfamily, Ale was the most abundant lineage. Measuring the estimated insertion time of each element showed that, on average, Ivana and Chromovirus/Tekay were the youngest lineages of Copia and Gypsy superfamilies, respectively. Most elements were inactive in transcription, both constitutively and in leaves of plants exposed to an abiotic stress, except for some elements, mostly belonging to the Copia/Ale lineage. A relationship between the inactivity of an element and inactivity of genes lying in close proximity to it was established.

Conclusions: The data reported in this study provide one of the first sets of information on the genomic dynamics related to LTR-REs in a plant species with highly reliable genome sequence. Fig LTR-REs are highly heterogeneous in abundance and estimated insertion time, and only a few elements are transcriptionally active. In general, the data suggested a direct relationship between estimated insertion time and abundance of an element and an inverse relationship between insertion time (or abundance) and transcription, at least for Copia LTR-REs.

Keywords: Ficus carica L; Genome structure and evolution; Long terminal repeat retrotransposons; Plant retrotransposon dynamics; Retrotransposon expression; Retrotransposon insertion time.

MeSH terms

  • Evolution, Molecular*
  • Ficus / genetics*
  • Genome, Plant*
  • Phylogeny
  • Reproducibility of Results
  • Retroelements / genetics*
  • Species Specificity
  • Terminal Repeat Sequences / genetics*

Substances

  • Retroelements