Fundamental Identifiability Limits in Molecular Epidemiology
- PMID: 34009339
- PMCID: PMC8382926
- DOI: 10.1093/molbev/msab149
Fundamental Identifiability Limits in Molecular Epidemiology
Abstract
Viral phylogenies provide crucial information on the spread of infectious diseases, and many studies fit mathematical models to phylogenetic data to estimate epidemiological parameters such as the effective reproduction ratio (Re) over time. Such phylodynamic inferences often complement or even substitute for conventional surveillance data, particularly when sampling is poor or delayed. It remains generally unknown, however, how robust phylodynamic epidemiological inferences are, especially when there is uncertainty regarding pathogen prevalence and sampling intensity. Here, we use recently developed mathematical techniques to fully characterize the information that can possibly be extracted from serially collected viral phylogenetic data, in the context of the commonly used birth-death-sampling model. We show that for any candidate epidemiological scenario, there exists a myriad of alternative, markedly different, and yet plausible "congruent" scenarios that cannot be distinguished using phylogenetic data alone, no matter how large the data set. In the absence of strong constraints or rate priors across the entire study period, neither maximum-likelihood fitting nor Bayesian inference can reliably reconstruct the true epidemiological dynamics from phylogenetic data alone; rather, estimators can only converge to the "congruence class" of the true dynamics. We propose concrete and feasible strategies for making more robust epidemiological inferences from viral phylogenetic data.
Keywords: birth-death-sampling model; epidemiology; phylogenetics; statistical inference.
© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Figures
Similar articles
-
Inferring epidemiological dynamics with Bayesian coalescent inference: the merits of deterministic and stochastic models.Genetics. 2015 Feb;199(2):595-607. doi: 10.1534/genetics.114.172791. Epub 2014 Dec 19. Genetics. 2015. PMID: 25527289 Free PMC article.
-
Bayesian phylodynamic inference with complex models.PLoS Comput Biol. 2018 Nov 13;14(11):e1006546. doi: 10.1371/journal.pcbi.1006546. eCollection 2018 Nov. PLoS Comput Biol. 2018. PMID: 30422979 Free PMC article.
-
Estimating Epidemic Incidence and Prevalence from Genomic Data.Mol Biol Evol. 2019 Aug 1;36(8):1804-1816. doi: 10.1093/molbev/msz106. Mol Biol Evol. 2019. PMID: 31058982 Free PMC article.
-
Studying speciation and extinction dynamics from phylogenies: addressing identifiability issues.Trends Ecol Evol. 2022 Jun;37(6):497-506. doi: 10.1016/j.tree.2022.02.004. Epub 2022 Mar 1. Trends Ecol Evol. 2022. PMID: 35246322 Review.
-
Integrating molecular epidemiology and social network analysis to study infectious diseases: Towards a socio-molecular era for public health.Infect Genet Evol. 2016 Dec;46:248-255. doi: 10.1016/j.meegid.2016.05.042. Epub 2016 Jun 2. Infect Genet Evol. 2016. PMID: 27262354 Free PMC article. Review.
Cited by
-
Rapidly changing speciation and extinction rates can be inferred in spite of nonidentifiability.Proc Natl Acad Sci U S A. 2023 Feb 14;120(7):e2208851120. doi: 10.1073/pnas.2208851120. Epub 2023 Feb 9. Proc Natl Acad Sci U S A. 2023. PMID: 36757894 Free PMC article.
-
A computationally tractable birth-death model that combines phylogenetic and epidemiological data.PLoS Comput Biol. 2022 Feb 11;18(2):e1009805. doi: 10.1371/journal.pcbi.1009805. eCollection 2022 Feb. PLoS Comput Biol. 2022. PMID: 35148311 Free PMC article.
-
State-dependent evolutionary models reveal modes of solid tumour growth.Nat Ecol Evol. 2023 Apr;7(4):581-596. doi: 10.1038/s41559-023-02000-4. Epub 2023 Mar 9. Nat Ecol Evol. 2023. PMID: 36894662 Free PMC article.
-
Pulled Diversification Rates, Lineages-Through-Time Plots, and Modern Macroevolutionary Modeling.Syst Biol. 2022 Apr 19;71(3):758-773. doi: 10.1093/sysbio/syab083. Syst Biol. 2022. PMID: 34613395 Free PMC article.
-
Explanations for latitudinal diversity gradients must invoke rate variation.Proc Natl Acad Sci U S A. 2023 Aug 15;120(33):e2306220120. doi: 10.1073/pnas.2306220120. Epub 2023 Aug 3. Proc Natl Acad Sci U S A. 2023. PMID: 37535654 Free PMC article.
References
-
- Akaike H.1981. Likelihood of a model and information criteria. J Econom. 16(1):3–14.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
