Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jun 28;61(6):2697-2705.
doi: 10.1021/acs.jcim.0c01489. Epub 2021 May 19.

XGraphBoost: Extracting Graph Neural Network-Based Features for a Better Prediction of Molecular Properties

Affiliations

XGraphBoost: Extracting Graph Neural Network-Based Features for a Better Prediction of Molecular Properties

Daiguo Deng et al. J Chem Inf Model. .

Erratum in

Abstract

Determining the properties of chemical molecules is essential for screening candidates similar to a specific drug. These candidate molecules are further evaluated for their target binding affinities, side effects, target missing probabilities, etc. Conventional machine learning algorithms demonstrated satisfying prediction accuracies of molecular properties. A molecule cannot be directly loaded into a machine learning model, and a set of engineered features needs to be designed and calculated from a molecule. Such hand-crafted features rely heavily on the experiences of the investigating researchers. The concept of graph neural networks (GNNs) was recently introduced to describe the chemical molecules. The features may be automatically and objectively extracted from the molecules through various types of GNNs, e.g., GCN (graph convolution network), GGNN (gated graph neural network), DMPNN (directed message passing neural network), etc. However, the training of a stable GNN model requires a huge number of training samples and a large amount of computing power, compared with the conventional machine learning strategies. This study proposed the integrated framework XGraphBoost to extract the features using a GNN and build an accurate prediction model of molecular properties using the classifier XGBoost. The proposed framework XGraphBoost fully inherits the merits of the GNN-based automatic molecular feature extraction and XGBoost-based accurate prediction performance. Both classification and regression problems were evaluated using the framework XGraphBoost. The experimental results strongly suggest that XGraphBoost may facilitate the efficient and accurate predictions of various molecular properties. The source code is freely available to academic users at https://github.com/chenxiaowei-vincent/XGraphBoost.git.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources