Aberrant Cerebello-Cortical Connectivity in Pianists With Focal Task-Specific Dystonia

Cereb Cortex. 2021 May 19;bhab127. doi: 10.1093/cercor/bhab127. Online ahead of print.

Abstract

Musician's dystonia is a type of focal task-specific dystonia (FTSD) characterized by abnormal muscle hypercontraction and loss of fine motor control specifically during instrument playing. Although the neuropathophysiology of musician's dystonia remains unclear, it has been suggested that maladaptive functional abnormalities in subcortical and cortical regions may be involved. Here, we hypothesized that aberrant effective connectivity between the cerebellum (subcortical) and motor/somatosensory cortex may underlie the neuropathophysiology of musician's dystonia. Using functional magnetic resonance imaging, we measured the brain activity of 30 pianists with or without FTSD as they played a magnetic resonance imaging-compatible piano-like keyboard, which elicited dystonic symptoms in many but not all pianists with FTSD. Pianists with FTSD showed greater activation of the right cerebellum during the task than healthy pianists. Furthermore, patients who reported dystonic symptoms during the task demonstrated greater cerebellar activation than those who did not, establishing a link between cerebellar activity and overt dystonic symptoms. Using multivoxel pattern analysis, moreover, we found that dystonic and healthy pianists differed in the task-related effective connectivity between the right cerebellum and left premotor/somatosensory cortex. The present study indicates that abnormal cerebellar activity and cerebello-cortical connectivity may underlie the pathophysiology of FTSD in musicians.

Keywords: effective connectivity; focal task-specific dystonia; functional MRI; musician’s dystonia.