Human photoreceptor cells from different macular subregions have distinct transcriptional profiles

Hum Mol Genet. 2021 May 20;ddab140. doi: 10.1093/hmg/ddab140. Online ahead of print.

Abstract

The human neural retina is a light sensitive tissue with remarkable spatial and cellular organization. Compared to the periphery, the central retina contains more densely packed cone photoreceptor cells with unique morphologies and synaptic wiring. Some regions of the central retina exhibit selective degeneration or preservation in response to retinal disease and the basis for this variation is unknown. In this study, we used both bulk and single-cell RNA sequencing to compare gene expression within concentric regions of the central retina. We identified unique gene expression patterns of foveal cone photoreceptor cells, including many foveal-enriched transcription factors. In addition, we found that the genes RORB1, PPFIA1, and KCNAB2 are differentially spliced in the foveal, parafoveal, and macular regions. These results provide a highly detailed spatial characterization of the retinal transcriptome and highlight unique molecular features of different retinal regions.