Hydrogel-Assisted 3D Model to Investigate the Osteoinductive Potential of MC3T3-Derived Extracellular Vesicles

ACS Biomater Sci Eng. 2021 Jun 14;7(6):2687-2700. doi: 10.1021/acsbiomaterials.1c00386. Epub 2021 May 21.

Abstract

Effective and rapid regeneration of bone defects often pose substantial challenges in severe accidental injuries and disabilities occurring due to diseases and/or advanced age, especially in patients having reduced tissue regeneration competence. The success of mesenchymal stromal cell (MSC)-based research strategies in improving bone regeneration was hampered not only due to the limited knowledge of therapeutic actions of MSCs but also due to difficulties as well as expenses related to cell manufacturing and time taken for ethical approvals for clinical use of living cells and engineered tissues. The recent trend indicated that there is a shift from the direct usage of MSCs toward the application of paracrine factors and extracellular vesicles (EVs) isolated from their MSC secretome in bone tissue regeneration. This shift has directed research into the development of "cell-free" therapeutics, which could be a better alternative due to its several advantages over the use of their parental MSCs. Furthermore, accumulating evidence suggested that the 3D microenvironment influences the paracrine effects of MSCs. Although the osteogenic role of EVs has been explored recently, the current study showed, for the first time, that encapsulation of EVs along with MC3T3 cells in a 3D hydrogel-assisted culture with a distinct porous microenvironment having meso and macro (0.05-200 μm) pore size distribution resulted in an improved osteogenic response in vitro. The present work was primarily focused on investigating the influence of EVs isolated under distinct priming conditions to enhance the osteogenic potential. In addition, in the current work, the osteogenic ability of different types of EVs (microvesicles and exosomes) and total EVs isolated at different time points was also examined when encapsulated with MC3T3 cells in an alginate gel. Using various biochemical assays, such as alkaline phosphatase (ALP) production and calcium secretion, it was observed that both microvesicles and exosomes collected from MC3T3 cells independently had osteogenic potential; however, their collective activity was found to be superior. We further showed that EVs induce an early osteogenic response in MC3T3 cells as indicated by ALP and calcium secretion at a much earlier time point, compared to the controls. Our data suggested that this 3D hydrogel-assisted system provides close proximity of cells and EVs, and thus, mimics the in vivo scenario, making it clinically useful for bone tissue engineering.

Keywords: 3D culture; exosomes; extracellular vesicles; hydrogel; microvesicles; osteoinduction.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bone Regeneration
  • Extracellular Vesicles*
  • Humans
  • Hydrogels
  • Mesenchymal Stem Cells*
  • Osteogenesis

Substances

  • Hydrogels