Unraveling the molecular crosstalk between Atherosclerosis and COVID-19 comorbidity

Comput Biol Med. 2021 Jul:134:104459. doi: 10.1016/j.compbiomed.2021.104459. Epub 2021 May 1.

Abstract

Background: Corona virus disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus -2 (SARS-CoV-2) has created ruckus throughout the world. Growing epidemiological studies have depicted atherosclerosis as a comorbid factor of COVID-19. Though both these diseases are triggered via inflammatory rage that leads to injury of healthy tissues, the molecular linkage between them and their co-influence in causing fatality is not yet understood.

Methods: We have retrieved the data of differentially expressed genes (DEGs) for both atherosclerosis and COVID-19 from publicly available microarray and RNA-Seq datasets. We then reconstructed the protein-protein interaction networks (PPIN) for these diseases from protein-protein interaction data of corresponding DEGs. Using RegNetwork and TRRUST, we mapped the transcription factors (TFs) in atherosclerosis and their targets (TGs) in COVID-19 PPIN.

Results: From the atherosclerotic PPIN, we have identified 6 hubs (TLR2, TLR4, EGFR, SPI1, MYD88 and IRF8) as differentially expressed TFs that might control the expression of their 17 targets in COVID-19 PPIN. The important target proteins include IL1B, CCL5, ITGAM, IFIT3, CXCL1, CXCL2, CXCL3 and CXCL8. Consequent functional enrichment analysis of these TGs have depicted inflammatory responses to be overrepresented among the gene sets.

Conclusion: Finally, analyzing the DEGs in cardiomyocytes infected with SARS-CoV-2, we have concluded that MYD88 is a crucial linker of atherosclerosis and COVID-19, the co-existence of which lead to fatal outcomes. Anti-inflammatory therapy targeting MYD88 could be a potent strategy for combating this comorbidity.

Keywords: Atherosclerosis; COVID-19; Differentially expressed genes; Protein-protein interaction network; SARS-CoV-2; Transcription factors.

MeSH terms

  • Atherosclerosis* / epidemiology
  • Atherosclerosis* / genetics
  • COVID-19*
  • Comorbidity
  • Humans
  • Protein Interaction Maps
  • SARS-CoV-2