Carbonate assisted lipid extraction and biodiesel production from wet microalgal biomass and recycling waste carbonate for CO2 supply in microalgae cultivation

Sci Total Environ. 2021 Jul 20:779:146445. doi: 10.1016/j.scitotenv.2021.146445. Epub 2021 Mar 14.

Abstract

High cost of microalgal biofuel is caused by all the steps in current technology, including cultivation, harvesting, lipid extraction, biofuel processing and wastewater and waste treatment. This study aims to systematically reduce these costs with one integrated process, in which carbonate is used for cell rupture, lipid extraction and biodiesel processing, and then recycled for CO2 absorption and carbon supply for a new round of algae cultivation. To reach this goal, carbonate-heating treatment with N, N' - dibutylurea which can enhance cell disruption were used for cell-wall breaking of wet Neochloris oleoabundans (UTEX 1185) biomass. Lipid extraction was fulfilled with carbonate/ethanol aqueous two phase extraction method and residual carbonate with wastewater from bottom phase was recycled to absorb CO2 to generate bicarbonate for algal cultivation with fresh medium. Taking into comprehensive consideration of cell disruption efficiency, partition coefficient, and lipid recovery, the condition of cell disruption and lipid extraction was set at 90 °C, 100 min reaction time, 1:7.5 DBU:H2O (w/w) ratio, 1:3 Na2CO3:H2O (w/w) ratio, and 9% (w/wT) ethanol concentration. The results showed that carbonate-heating treatment of wet N. oleoabundans biomass resulted in up to 90.7% cell disruption efficiency. The lipid recovery rate in carbonate/ethanol system was up to 97.9%, and the final biodiesel production was 1.30 times of that with Soxhlet method. Utilization of the waste broth after CO2 absorption with the content of 4% (v/vT) in the medium for new batch of algae cultivation resulted in biomass concentration of 1.68 g/L. The corresponding total fatty acids production was 0.35 g/L, which was 1.63 fold of that with fresh medium. This study firstly proved the feasibility of using carbonate for lipid extraction and biodiesel production and recycle waste carbonate for carbon re-supply during algae cultivation.

Keywords: Bicarbonate; Biofuel; Neochloris oleoabundans.

MeSH terms

  • Biofuels
  • Biomass
  • Carbon Dioxide
  • Carbonates
  • Lipids
  • Microalgae*
  • Wastewater

Substances

  • Biofuels
  • Carbonates
  • Lipids
  • Waste Water
  • Carbon Dioxide