Detecting adaptive introgression in human evolution using convolutional neural networks
- PMID: 34032215
- PMCID: PMC8192126
- DOI: 10.7554/eLife.64669
Detecting adaptive introgression in human evolution using convolutional neural networks
Abstract
Studies in a variety of species have shown evidence for positively selected variants introduced into a population via introgression from another, distantly related population-a process known as adaptive introgression. However, there are few explicit frameworks for jointly modelling introgression and positive selection, in order to detect these variants using genomic sequence data. Here, we develop an approach based on convolutional neural networks (CNNs). CNNs do not require the specification of an analytical model of allele frequency dynamics and have outperformed alternative methods for classification and parameter estimation tasks in various areas of population genetics. Thus, they are potentially well suited to the identification of adaptive introgression. Using simulations, we trained CNNs on genotype matrices derived from genomes sampled from the donor population, the recipient population and a related non-introgressed population, in order to distinguish regions of the genome evolving under adaptive introgression from those evolving neutrally or experiencing selective sweeps. Our CNN architecture exhibits 95% accuracy on simulated data, even when the genomes are unphased, and accuracy decreases only moderately in the presence of heterosis. As a proof of concept, we applied our trained CNNs to human genomic datasets-both phased and unphased-to detect candidates for adaptive introgression that shaped our evolutionary history.
Keywords: adaptive introgression; computational biology; genetics; genomics; human; machine learning; simulation; systems biology.
© 2021, Gower et al.
Conflict of interest statement
GG, PP, MF, FR No competing interests declared
Figures
Similar articles
-
VolcanoFinder: Genomic scans for adaptive introgression.PLoS Genet. 2020 Jun 18;16(6):e1008867. doi: 10.1371/journal.pgen.1008867. eCollection 2020 Jun. PLoS Genet. 2020. PMID: 32555579 Free PMC article.
-
An HMM-based comparative genomic framework for detecting introgression in eukaryotes.PLoS Comput Biol. 2014 Jun 12;10(6):e1003649. doi: 10.1371/journal.pcbi.1003649. eCollection 2014 Jun. PLoS Comput Biol. 2014. PMID: 24922281 Free PMC article.
-
Detection and Classification of Hard and Soft Sweeps from Unphased Genotypes by Multilocus Genotype Identity.Genetics. 2018 Dec;210(4):1429-1452. doi: 10.1534/genetics.118.301502. Epub 2018 Oct 12. Genetics. 2018. PMID: 30315068 Free PMC article.
-
Adaptive introgression in animals: examples and comparison to new mutation and standing variation as sources of adaptive variation.Mol Ecol. 2013 Sep;22(18):4606-18. doi: 10.1111/mec.12415. Epub 2013 Aug 1. Mol Ecol. 2013. PMID: 23906376 Review.
-
Interpreting the genomic landscape of introgression.Curr Opin Genet Dev. 2017 Dec;47:69-74. doi: 10.1016/j.gde.2017.08.007. Epub 2017 Sep 17. Curr Opin Genet Dev. 2017. PMID: 28923541 Review.
Cited by
-
Temporal Variation in Introgressed Segments' Length Statistics Computed from a Limited Number of Ancient Genomes Sheds Light on Past Admixture Pulses.Mol Biol Evol. 2023 Dec 1;40(12):msad252. doi: 10.1093/molbev/msad252. Mol Biol Evol. 2023. PMID: 37992125 Free PMC article.
-
MaLAdapt Reveals Novel Targets of Adaptive Introgression From Neanderthals and Denisovans in Worldwide Human Populations.Mol Biol Evol. 2023 Jan 4;40(1):msad001. doi: 10.1093/molbev/msad001. Mol Biol Evol. 2023. PMID: 36617238 Free PMC article.
-
Assessing the Presence of Recent Adaptation in the Human Genome With Mixture Density Regression.Genome Biol Evol. 2023 Oct 6;15(10):evad170. doi: 10.1093/gbe/evad170. Genome Biol Evol. 2023. PMID: 37713622 Free PMC article.
-
On convolutional neural networks for selection inference: Revealing the effect of preprocessing on model learning and the capacity to discover novel patterns.PLoS Comput Biol. 2023 Nov 27;19(11):e1010979. doi: 10.1371/journal.pcbi.1010979. eCollection 2023 Nov. PLoS Comput Biol. 2023. PMID: 38011281 Free PMC article.
-
Tree sequences as a general-purpose tool for population genetic inference.bioRxiv [Preprint]. 2024 Oct 5:2024.02.20.581288. doi: 10.1101/2024.02.20.581288. bioRxiv. 2024. Update in: Mol Biol Evol. 2024 Nov 1;41(11):msae223. doi: 10.1093/molbev/msae223 PMID: 39185244 Free PMC article. Updated. Preprint.
References
-
- Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X. TensorFlow: large-scale machine learning on heterogeneous systems. arXiv. 2015 https://arxiv.org/abs/1603.04467
-
- Adrion JR, Cole CB, Dukler N, Galloway JG, Gladstein AL, Gower G, Kyriazis CC, Ragsdale AP, Tsambos G, Baumdicker F, Carlson J, Cartwright RA, Durvasula A, Gronau I, Kim BY, McKenzie P, Messer PW, Noskova E, Ortega-Del Vecchyo D, Racimo F, Struck TJ, Gravel S, Gutenkunst RN, Lohmueller KE, Ralph PL, Schrider DR, Siepel A, Kelleher J, Kern AD. A community-maintained standard library of population genetic models. eLife. 2020a;9:e54967. doi: 10.7554/eLife.54967. - DOI - PMC - PubMed
-
- Aggarwal CC. Neural Networks and Deep Learning. Springer; 2018. - DOI
-
- Alaa AM, van der Schaar M. Demystifying black-box models with symbolic metamodels. In: Wallach H, Larochelle H, Beygelzimer A, Alché-Buc F. d, Fox E, Garnett R, editors. Advances in Neural Information Processing Systems 32. Curran Associates, Inc; 2019. pp. 11304–11314.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
