Determinants of endurance in well-trained cyclists

J Appl Physiol (1985). 1988 Jun;64(6):2622-30. doi: 10.1152/jappl.1988.64.6.2622.


Fourteen competitive cyclists who possessed a similar maximum O2 consumption (VO2 max; range, 4.6-5.0 l/min) were compared regarding blood lactate responses, glycogen usage, and endurance during submaximal exercise. Seven subjects reached their blood lactate threshold (LT) during exercise of a relatively low intensity (group L) (i.e., 65.8 +/- 1.7% VO2 max), whereas exercise of a relatively high intensity was required to elicit LT in the other seven men (group H) (i.e., 81.5 +/- 1.8% VO2 max; P less than 0.001). Time to fatigue during exercise at 88% of VO2 max was more than twofold longer in group H compared with group L (60.8 +/- 3.1 vs. 29.1 +/- 5.0 min; P less than 0.001). Over 92% of the variance in performance was related to the % VO2 max at LT and muscle capillary density. The vastus lateralis muscle of group L was stressed more than that of group H during submaximal cycling (i.e., 79% VO2 max), as reflected by more than a twofold greater (P less than 0.001) rate of glycogen utilization and blood lactate concentration. The quality of the vastus lateralis in groups H and L was similar regarding mitochondrial enzyme activity, whereas group H possessed a greater percentage of type I muscle fibers (66.7 +/- 5.2 vs. 46.9 +/- 3.8; P less than 0.01). The differing metabolic responses to submaximal exercise observed between the two groups appeared to be specific to the leg extension phase of cycling, since the blood lactate responses of the two groups were comparable during uphill running. These data indicate that endurance can vary greatly among individuals with an equal VO2 max.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3-Hydroxyacyl CoA Dehydrogenases / metabolism
  • Adult
  • Bicycling*
  • Capillaries / physiology
  • Citrate (si)-Synthase / metabolism
  • Heart Rate*
  • Humans
  • Lactates / blood
  • Male
  • Muscles / blood supply
  • Muscles / physiology
  • Oxygen Consumption
  • Physical Exertion*
  • Respiration*
  • Sports*


  • Lactates
  • 3-Hydroxyacyl CoA Dehydrogenases
  • Citrate (si)-Synthase