Altered cerebellar-cortical resting-state functional connectivity in cannabis users

J Psychopharmacol. 2021 Jul;35(7):823-832. doi: 10.1177/02698811211019291. Epub 2021 May 25.

Abstract

Background: Cannabis use has been associated with abnormalities in cerebellar mediated motor and non-motor (i.e. cognition and personality) phenomena. Since the cerebellum is a region with high cannabinoid type 1 receptor density, these impairments may reflect alterations of signaling between the cerebellum and other brain regions.

Aims: We hypothesized that cerebellar-cortical resting-state functional connectivity (rsFC) would be altered in cannabis users, relative to their non-using peers. It was also hypothesized that differences in rsFC would be associated with cannabis use features, such as age of initiation and lifetime use.

Methods: Cerebellar-cortical and subcortical rsFCs were computed between 28 cerebellar lobules, defined by a spatially unbiased atlas template of the cerebellum, and individual voxels in the cerebral regions, in 41 regular cannabis users (20 female) and healthy non-using peers (N = 31; 18 female). We also investigated associations between rsFC and cannabis use features (e.g. lifetime cannabis use and age of initiation).

Results: Cannabis users demonstrated hyperconnectivity between the anterior cerebellar regions (i.e. lobule I-IV) with the posterior cingulate cortex, and hypoconnectivity between the rest of the cerebellum (i.e. Crus I and II, lobule VIIb, VIIIa, VIIIb, IX, and X) and the cortex. No associations were observed between features of cannabis use and rsFC.

Conclusions: Cannabis use was associated with altered patterns of rsFC from the cerebellum to the cerebral cortex which may have a downstream impact on behavior and cognition.

Keywords: Cannabis; MRI; cerebellum; connectivity; posterior cingulate cortex; resting-state.

MeSH terms

  • Adolescent
  • Adult
  • Cerebellum / diagnostic imaging
  • Cerebellum / physiopathology*
  • Cerebral Cortex / diagnostic imaging
  • Cerebral Cortex / physiopathology*
  • Connectome*
  • Female
  • Humans
  • Magnetic Resonance Imaging
  • Male
  • Marijuana Use*
  • Young Adult