The miscibility gap in hydrogen-water mixtures is investigated by conducting Gibbs-ensemble Monte Carlo simulations with analytical two-body interaction potentials between the molecular species. We calculate several demixing curves at pressures below 150 kbar and temperatures of 1000 K ≤T≤ 2000 K. Despite the approximations introduced by the two-body interaction potentials, our results predict a large miscibility gap in hydrogen-water mixtures at similar conditions as found in experiments. Our findings are in contrast to those from ab initio simulations and provide a renewed indication that hydrogen-water immiscibility regions may have a significant impact on the structure and evolution of ice giant planets like Uranus and Neptune.