A dual-channel optical chemical sensing system for selective detection of nerve agent simulant DFP

Anal Bioanal Chem. 2021 Jul;413(17):4501-4509. doi: 10.1007/s00216-021-03413-5. Epub 2021 May 27.

Abstract

This paper reports a novel optical chemical sensing system for selective detection of diisopropylfluorophosphate (DFP), a simulant of fluorine-containing nerve agents (Sarin and Soman). Contrary to the reported methods involving only single sensing probe, this sensing system is comprised of two molecular sensing probes (1 and 2) having intrinsic affinities for reactive subunits of DFP (electrophilic phosphorus and fluoride ion). On exposure to DFP, two molecular probes react in tandem with electrophilic phosphorus and fluoride ion (by-product of the initial phosphorylation reaction) to induce a unique modulation in the optical properties of the sensing system which leads to selective detection of DFP in solution as interferents like phosphorus-containing compounds, acids, and anions were unable to induce similar optical modulation due to lack of both electrophilic phosphorus and fluorine in the same molecule. Calibration curve between the amount of DFP added and the absorption intensity revealed the colorimetric detection limit of the system to be 4.50 μM which was further lowered to 2.22 μM by making use of a self-immolative fluoride sensing probe 5.

Keywords: Chemical sensing; DFP; Dual channel; Nerve agent; Self-immolation.