Electron Attachment to Cytosine: The Role of Water

J Phys Chem A. 2021 Jun 10;125(22):4683-4694. doi: 10.1021/acs.jpca.0c10199. Epub 2021 May 28.

Abstract

We present an EOM-CCSD-based quantum mechanical/molecular mechanical (QM/MM) study on the electron attachment process to solvated cytosine. The electron attachment in the bulk solvated cytosine occurs through a doorway mechanism, where the initial electron is localized on water. The electron is subsequently transferred to cytosine by the mixing of electronic and nuclear degrees of freedom, which occurs on an ultrafast time scale. The bulk water environment stabilizes the cytosine-bound anion by an extensive hydrogen-bond network and drastically enhances the electron transfer rate from that observed in the gas phase. Microhydration studies cannot reproduce the effect of the bulk water environment on the electron attachment process, and one needs to include a large number of water molecules in the calculation to obtain converged results. The predicted adiabatic electron affinity and electron transfer rate obtained from our QM/MM calculations are consistent with the available experimental results.