Alligators employ intermetatarsal reconfiguration to modulate plantigrade ground contact

J Exp Biol. 2021 Jun 1;224(11):jeb242240. doi: 10.1242/jeb.242240. Epub 2021 Jun 4.


Feet must mediate substrate interactions across an animal's entire range of limb poses used in life. Metatarsals, the 'bones of the sole', are the dominant pedal skeletal elements for most tetrapods. In plantigrade species that walk on the entirety of their sole, such as living crocodylians, intermetatarsal mobility offers the potential for a continuum of reconfiguration within the foot itself. Alligator hindlimbs are capable of postural extremes from a belly sprawl to a high walk to sharp turns - how does the foot morphology dynamically accommodate these diverse demands? We implemented a hybrid combination of marker-based and markerless X-ray reconstruction of moving morphology (XROMM) to measure 3D metatarsal kinematics in three juvenile American alligators (Alligator mississippiensis) across their locomotor and maneuvering repertoire on a motorized treadmill and flat-surfaced arena. We found that alligators adaptively conformed their metatarsals to the ground, maintaining plantigrade contact throughout a spectrum of limb placements with non-planar feet. Deformation of the metatarsus as a whole occurred through variable abduction (twofold range of spread) and differential metatarsal pitching (45 deg arc of skew). Internally, metatarsals also underwent up to 65 deg of long-axis rotation. Such reorientation, which correlated with skew, was constrained by the overlapping arrangement of the obliquely expanded metatarsal bases. Such a proximally overlapping metatarsal morphology is shared by fossil archosaurs and archosaur relatives. In these extinct taxa, we suggest that intermetatarsal mobility likely played a significant role in maintaining ground contact across plantigrade postural extremes.

Keywords: Alligator; Archosaur; Foot; Foot posture; Metatarsal; XROMM.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alligators and Crocodiles*
  • Animals
  • Biomechanical Phenomena
  • Bone and Bones
  • Hindlimb
  • Walking