Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Oct 11;62(6):1044-1057.
doi: 10.1093/pcp/pcab082.

Arabidopsis thaliana Ubiquitin-Associated Protein 1 (AtUAP1) Interacts with redundant RING Zinc Finger 1 (AtRZF1) to Negatively Regulate Dehydration Response

Affiliations

Arabidopsis thaliana Ubiquitin-Associated Protein 1 (AtUAP1) Interacts with redundant RING Zinc Finger 1 (AtRZF1) to Negatively Regulate Dehydration Response

Ji-Hee Min et al. Plant Cell Physiol. .

Abstract

Ubiquitination, one of the most frequently occurring post-translational modifications, is essential for regulating diverse cellular processes in plants during abiotic stress. The E3 ubiquitin (Ub) ligase Arabidopsis thaliana really interesting new gene (RING) zinc finger 1 (AtRZF1) mutation is known to enhance drought tolerance in A. thaliana seedlings. To further investigate the function of AtRZF1 in osmotic stress, we isolated Ub-associated protein 1 (AtUAP1) which interacts with AtRZF1 using a yeast two-hybrid system. AtUAP1, a Ub-associated motif containing protein, increased the amount of Ub-conjugated AtRZF1. Moreover, AtUAP1 RNA interference lines were more tolerant to osmotic stress than wild type, whereas AtUAP1-overexpressing (OX) transgenic lines showed sensitive responses, including cotyledon greening, water loss, proline accumulation and changes in stress-related genes expression, indicating that AtUAP1 could negatively regulate dehydration-mediated signaling. In addition, AtUAP1-green fluorescent protein fusion protein was observed in the nuclei of root cells of transgenic seedlings. Genetic studies showed that the AtRZF1 mutation could rescue the sensitive phenotype of AtUAP1-OX lines in response to osmotic stress, suggesting that AtRZF1 was epistatic to AtUAP1 in dehydration signaling. Taken together, our findings describe a new component in the AtRZF1 ubiquitination pathway which controls the dehydration response in A. thaliana.

Keywords: AtRZF1 •; E4 ubiquitin factor •; Osmotic stress •; Protein interaction •; Ubiquitin chain; Ubiquitin-associated domain •.

PubMed Disclaimer

Similar articles

Cited by