Enhanced photocatalytic performance of PdO-loaded heterostructured nanobelts to degrade phenol

Chemosphere. 2021 Aug:276:130266. doi: 10.1016/j.chemosphere.2021.130266. Epub 2021 Mar 14.

Abstract

Heterostructured catalysts play a significant role in the photodegradation of pollutants in wastewater. Combining the large surface of nanobelts with the high photocatalytic property of titanium dioxide (TiO2) nanoparticles is a promising method for preparing photocatalysts, which have an advanced photocatalytic activity and are easy to precipitate. In this work, titanium dioxide nanobelts (NB) and acid corroded titanium dioxide nanobelts (C-NB) were synthesized via a hydrothermal process under alkaline conditions. Their surfaces were then loaded with palladium oxide (PdO) nanoparticles to prepare heterostructured photocatalysts (PdO-NB and PdO-C-NB) by a well-designed chemical precipitation method. The photodegradation efficiencies of the four catalysts for phenol, as well as for methyl orange, were tested and the order of degradation efficiency was found to be PdO-C-NB > PdO-NB > C-NB > NB. A degradation efficiency of 61% for phenol was achieved within 90 min using PdO-C-NB, which was nearly twice as much as using NB. The enhanced photocatalytic property of PdO-C-NB was due to the large specific surface area, abundant photocatalytic active sites and the low recombination rate of electron-hole pairs. Therefore, the degradation of phenol and methyl orange was speeded up considerably. Considering the high catalytic activity of PdO-C-NB, the heterostructure catalyst is of great significance to the degradation of organic wastewater, and has an important impact on our ecological environment and human health.

Keywords: Heterostructure; Nanobelt; Palladium oxide; Phenol; Photocatalysis.

MeSH terms

  • Humans
  • Palladium*
  • Phenol*
  • Phenols
  • Photolysis

Substances

  • Phenols
  • Phenol
  • Palladium
  • palladium oxide