Reading-related brain changes in audiovisual processing: cross-sectional and longitudinal MEG evidence

J Neurosci. 2021 Jun 1;41(27):5867-5875. doi: 10.1523/JNEUROSCI.3021-20.2021. Online ahead of print.


The ability to establish associations between visual objects and speech sounds is essential for human reading. Understanding the neural adjustments required for acquisition of these arbitrary audiovisual associations can shed light on fundamental reading mechanisms and help reveal how literacy builds on pre-existing brain circuits. To address these questions, the present longitudinal and cross-sectional MEG studies characterize the temporal and spatial neural correlates of audiovisual syllable congruency in children (4-9 years old, 22 males and 20 females) learning to read. Both studies showed that during the first years of reading instruction children gradually set up audiovisual correspondences between letters and speech sounds, which can be detected within the first 400 ms of a bimodal presentation and recruit the superior portions of the left temporal cortex. These findings suggest that children progressively change the way they treat audiovisual syllables as a function of their reading experience. This reading-specific brain plasticity implies (partial) recruitment of pre-existing brain circuits for audiovisual analysis.SIGNIFICANCE STATEMENTLinking visual and auditory linguistic representations is the basis for the development of efficient reading, while dysfunctional audiovisual letter processing predicts future reading disorders. Our developmental MEG project included a longitudinal and a cross-sectional study; both studies showed that children's audiovisual brain circuits progressively change as a function of reading experience. They also revealed an exceptional degree of neuroplasticity in audiovisual neural networks, showing that as children develop literacy, the brain progressively adapts so as to better detect new correspondences between letters and speech sounds.